Using Advanced Machine Learning Techniques to Predict the Sales Volume of Non-Fungible Tokens

Main Article Content

Özge Çamalan
https://orcid.org/0000-0002-7196-8882
Şahika Gökmen
https://orcid.org/0000-0002-4127-7108
Sibel Atan
https://orcid.org/0000-0002-4868-753X

Abstract

Non-fungible tokens (NFTs) are a type of digital asset based on blockchain that contain unique codes verifying the authenticity and ownership of different assets such as art pieces, music, gaming items, collections, and so on. This phenomenon and its markets have grown significantly since the beginning of 2021. This study, using daily data between November 2017 and November 2022, predicts the volume of NFT sales by utilising Random Forest (RF), GBM, XGBoost, and LightGBM methods from the community machine learning methods. In the predictions, several financial variables, including Gold, Bitcoin/USD, Ethereum/USD, S&P 500 index, Nasdaq 100, Oil/USD, Euro/USD, and CDS data, are treated as independent variables. According to the results, XGBoost is found to be the best prediction method for NFT market volume estimation concerning several statistical criteria, e.g., MAE, MAPE, and RMSE, and the most significant influential feature in determining prices is the Ethereum/USD exchange rate.


JEL codes: G12, C53


Keywords: Financial assets, Non-fungible tokens, Machine learning

Downloads

Download data is not yet available.

Article Details

How to Cite
Çamalan, Özge, Gökmen, Şahika and Atan, S. (2024) “Using Advanced Machine Learning Techniques to Predict the Sales Volume of Non-Fungible Tokens”, World Journal of Applied Economics, 10(1), pp. 17-27. doi: 10.22440/wjae.10.1.2.
Section
Research Articles

References

Aharon, D. Y., & Demir, E. (2022). NFTs and asset class spillovers: Lessons from the period around the COVID-19 pandemic. Finance Research Letters, 47 (Part A), 102515. doi: 10.1016/j.frl.2021.102515

Ante, L. (2022). The Non-Fungible Token (NFT) Market and Its Relationship with Bitcoin and Ethereum. FinTech, 1 (3), 216-224. doi: 10.3390/fintech1030017

Aziz, R. M., Baluch, M. F., Patel, S., & Ganie, A. H. (2022). LGBM: a machine learning approach for Ethereum fraud detection. International Journal of Information Technology, 14 (7), 3321-3331. doi: 10.1007/s41870-022-00864-6

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (p. 785-794). ACM. doi: 10.1145/2939672.2939785

Dowling, M. (2021). Is non-fungible token pricing driven by cryptocurrencies? (Working Paper). SSRN. doi: 10.2139/ssrn.3815093

Dowling, M. (2022). Is non-fungible token pricing driven by cryptocurrencies? Finance Research Letters, 44 , 102097. doi: 10.1016/j.frl.2021.102097

Fridgen, G., Kraeussl, R., Papageorgiou, O., & Tugnetti, A. (2023). Pricing dynamics and herding behavior of NFTs (Working Paper). SSRN. doi: 10.2139/ssrn.4337173

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., . . . Liu, T.-Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In I. Guyon et al. (Eds.), Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Luo, J., Jia, Y., & Liu, X. (2023). Understanding NFT Price Moves through Tweets Keywords Analysis. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good. ACM. doi: 10.1145/3582515.3609562

Maouchi, Y., Charfeddine, L., & El Montasser, G. (2022). Understanding digital bubbles amidst the COVID-19 pandemic: Evidence from DeFi and NFTs. Finance Research Letters, 47 , 102584. doi: 10.1016/j.frl.2021.102584

Nadini, M., Alessandretti, L., Giacinto, F. D., Martino, M., Aiello, L. M., & Baronchelli, A. (2021). Mapping the NFT revolution: market trends, trade networks, and visual features. Scientific Reports, 11 , 20902. doi: 10.1038/s41598-021-00053-8

Osivand, S., & Abolhasani, H. (2021). Effect of bitcoin and Etherium on non-fungible token (NFT). Quarterly Journal of Economics, 23 (9 - Series 2), 49-51. doi: 10.9790/487X-2309024951

Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J., & Gifford, E. M. (2016). Extreme Gradient Boosting as a Method for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling, 56 (12), 2353-2360. doi: 10.1021/acs.jcim.6b00591

Wang, Z., & Lee, S. (2023). Prediction of NFT Sale Price Fluctuations on OpenSea Using Machine Learning Approaches. Computers, Materials & Continua, 75 (2), 2443-2459. doi: 10.32604/cmc.2023.037553

Yousaf, I., & Yarovaya, L. (2022). Static and dynamic connectedness between NFTs, DeFi and other assets: Portfolio implication. Global Finance Journal, 53 , 100719. doi: 10.1016/j.gfj.2022.100719

Zheng, X. (2022). Multimodal Learning for Improved NFT Price Prediction. In 2022 IEEE International Conference on e-Business Engineering (ICEBE) (p. 74-79). doi: 10.1109/ICEBE55470.2022.00022