Combined Forecasts of Intermittent Demand for Stock-keeping Units (SKUs)

Main Article Content

Aysun Kapucugil İkiz
https://orcid.org/0000-0002-8337-2111
Gizem Halil Utma
https://orcid.org/0000-0001-5040-1329

Abstract

Effective inventory management requires accurate forecasts for stock-keeping units (SKUs), especially for the strategic ones for companies’ operations and after-sales services like providing spare parts. Forecasting is a challenging task for such SKUs as they usually have intermittent demand (ID) patterns, consisting of many periods with zero demand and infrequent demand arrivals. Given the highly uncertain nature of ID for SKUs, this study developed a methodological framework for combining statistical and judgmental forecasts and assessed the performance of the proposed framework by using accuracy and bias measures. The forecasting process has several steps, including data preparation, data categorization based on demand patterns, generating statistical and judgmental forecasts, combining statistical and judgmental forecasts, and evaluating the forecast performance. These steps were illustrated on a real-world dataset that contains monthly customer demand data for after-sales spare parts. Results showed that combination is the best method for the majority of SKUs. This paper contributes to the limited literature by addressing the gap between the combined and ID forecasts. The proposed framework gives practitioners and researchers a comprehensive overview to help them make more accurate forecasts while encouraging the use of simple but structured approaches.


JEL classification:  C44, C53, M11


Keywords:  Statistical forecasting, Judgmental forecasting, Combining forecasts, Intermittent demand, Stock-keeping Units

Downloads

Download data is not yet available.

Article Details

How to Cite
Kapucugil İkiz, A. and Halil Utma, G. (2023) “Combined Forecasts of Intermittent Demand for Stock-keeping Units (SKUs)”, World Journal of Applied Economics, 9(1), pp. 1-31. doi: 10.22440/wjae.9.1.1.
Section
Research Articles
Author Biography

Gizem Halil Utma, Izmir University of Economics

Izmir University of Economics, Faculty of Business, Department of Business Administration, İzmir, Turkey. Email: gizem.halil@ieu.edu.tr, https://orcid.org/0000-0001-5040-1329

References

Armstrong, J. S. (1985). Long Range Forecasting: From Crystal Ball to Computer (2nd ed.). Wiley-Interscience, New York.

Armstrong, J. S. (2001). Combining Forecasts. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer, Dordrecht.

Armstrong, J. S. (2001). Judgmental Bootstrapping: Inferring Experts' Rules for Forecasting. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer, Dordrecht.

Armstrong, J. S. (2001). Selecting Forecasting Methods. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer, Dordrecht.

Babai, M. Z., Dallery, Y., Boubaker, S., & Kalai, R. (2019). A New Method to Forecast Intermittent Demand in the Presence of Inventory Obsolescence. International Journal of Production Economics, 209, 30-41. doi:10.1016/j.ijpe.2018.01.026

Bates, J. M., & Granger, C. W. (1969). The Combination of Forecasts. Journal of the Operational Research Society, 20, 451-468. doi:10.1057/jors.1969.103

Blattberg, R. C., & Hoch, S. J. (1990). Database Models and Managerial Intuition: 50% Model + 50% Manager. Management Science, 36, 887-899. doi:10.1287/mnsc.36.8.887

Boylan, J. E., Syntetos, A. A., & Karakostas, G. C. (2008). Classification for Forecasting and Stock Control: A Case Study. Journal of the Operational Research Society, 59, 473-481. doi:10.1057/palgrave.jors.2602312

Bunn, D. W., & Salo, A. A. (1993). Forecasting with Scenarios. Journal of Operational Research, 68, 291-303. doi:10.1016/0377-2217(93)90186-Q

Chan, F., & Pauwels, L. L. (2018). Some Theoretical Results on Forecast Combinations. International Journal of Forecasting, 34, 64-74. doi:10.1016/j.ijforecast.2017.08.005

Claeskens, G., Magnus, J. R., Vasnev, A. L., & Wang, W. (2016). The Forecast Combination Puzzle: A Simple Theoretical Explanation. International Journal of Forecasting, 32, 754-762. doi:10.1016/j.ijforecast.2015.12.005

Clemen, R. T. (1989). Combining Forecasts: A Review and Annotated Bibliography. International Journal of Forecasting, 5, 559-583. doi:10.1016/0169-2070(89)90012-5

Constantino, F., Di Gravio, G., Patriarca, R., & Petrella, L. (2018). Spare parts management for irregular demand items. Omega, 81, 57-66. doi:10.1016/j.omega.2017.09.009

Croston, J. D. (1972). Forecasting and Stock Control for Intermittent Demands. Operational Research Quarterly (1970-1977), 23, 289-303. doi:10.2307/3007885

Dalkey, N. (1969). An Experimental Study of Group Opinion: The Delphi Method. Futures, 1, 408-426. doi:10.1016/S0016-3287(69)80025-X

Davydenko, A., & Fildes, R. (2013). Measuring Forecasting Accuracy: The Case of Judgmental Adjustments to SKU-level Demand Forecasts. International Journal of Forecasting, 29, 510-522. doi:10.1016/j.ijforecast.2012.09.002

Duncan, G., Gorr, W. L., & Szczypula, J. (2001). Forecasting analogous time series. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer, Dordrecht.

Eaves, A. H. (2002). Forecasting for the Ordering and Stock-holding of Consumable Spare Parts. PhD thesis, Department of Management Science, The Management School, Lancaster University.

Eaves, A. H., & Kingsman, B. G. (2004). Forecasting for the Ordering and Stock-holding of Consumable Spare Parts. Journal of the Operational Research Society, 55, 431-437. doi:10.1057/palgrave.jors.2601697

Eroglu, C., & Croxton, K. L. (2010). Biases in Judgmental Adjustments of Statistical Forecasts: The Role of Individual Differences. Journal of the Operational Research Society, 26, 116-133. doi:10.1016/j.ijforecast.2009.02.005

Fildes, R. (1992). The Evaluation of Extrapolative Forecasting Methods. International Journal of Forecasting, 8, 81-98. doi:10.1016/0169-2070(92)90009-X

Fildes, R., & Petropoulos, F. (2015). Simple versus Complex Selection Rules for Forecasting Many Time Series. Journal of Business Research, 68, 1692–1701. doi:10.1016/j.jbusres.2015.03.028

Fildes, R., Ma, S., & Kolassa, S. (2019). Retail Forecasting: Research and Practice. MPRA Working Paper, Munich Archive.

Fischer, I., & Harvey, N. (1999). Combining Forecasts: What Information do Judges Need to Outperform the Simple Average? International Journal of Forecasting, 3, 227-246. doi:10.1016/S0169-2070(98)00073-9

Franses, P. H., & Legerstee, R. (2010). Do Experts' Adjustments on Model-Based SKU-Level Forecasts Improve Forecast Quality? Journal of Forecasting, 29, 331-340. doi:10.1002/for.1129

Ghobbar, A. A., & Friend, C. H. (2002). Sources of Intermittent Demand for Aircraft Spare Parts within Airline Operations. Journal of Air Transport Management, 8, 221-231. doi:10.1016/S0969-6997(01)00054-0

Ghobbar, A. A., & Friend, C. H. (2003). Evaluation of Forecasting Methods for Intermittent Parts Demand in the Field of Aviation: A Predictive Model. Computers & Operations Research, 30, 2097-2114. doi:10.1016/S0305-0548(02)00125-9

Green, K. C., & Armstrong, J. S. (2007). Structured Analogies for Forecasting. International Journal of Forecasting, 23, 365-376. doi:10.1016/j.ijforecast.2007.05.005

Green, K. C., & Armstrong, J. S. (2015). Simple Versus Complex Forecasting: The Evidence. Journal of Business Research, 68, 1678-1685. doi:10.1016/j.jbusres.2015.03.026

Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy Demand Forecasting using Neural Networks. International Journal Production Economics, 111, 409-420. doi:10.1016/j.ijpe.2007.01.007

Hanke, J. E., & Wichern, D. (2014). Business Forecasting (9th ed.). Pearson Education Limited, Essex.

Hasni, M., Babai, M. Z., Aguir, M. S., & Jemai, Z. (2019). An Investigation on Bootstrapping Forecasting Methods for Intermittent Demands. International Journal Production Economics, 209, 20-29. doi:10.1016/j.ijpe.2018.03.001

Hsu, C. C., & Sandford, B. A. (2007). The Delphi Technique: Making Sense of Consensus. Practical Assessment, Research, and Evaluation, 12, 1-8. doi:10.7275/pdz9-th90

Hua, Z. S., Zhang, B., Yang, J., & Tan, D. S. (2007). A New Approach of Forecasting Intermittent Demand for Spare Parts Inventories in the Process Industries. Journal of the Operational Research Society, 58, 52-61. doi:10.1057/palgrave.jors.2602119

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (Second ed.). Otexts, Melbourne.

Hyndman, R. J., & Koehler, A. B. (2006). Another Look at Measures of Forecast Accuracy. International Journal of Forecasting, 22, 679-688. doi:10.1016/j.ijforecast.2006.03.001

Johnston, F. R., & Boylan, J. E. (1996). Forecasting for Items with Intermittent Demand. The Journal of the Operational Research Society, 47, 113-121. doi:10.2307/2584256

Johnston, F. R., Boylan, J. E., & Shale, E. A. (2003). An Examination of the Size of Orders from Customers, their Characterisation and the Implications for Inventory Control for Slow-moving Items. The Journal of the Operational Research Society, 54, 833-837. doi:10.1057/palgrave.jors.2601586

Kostenko, A. V., & Hyndman, R. J. (2006). A Note on the Categorization of Demand Patterns. The Journal of the Operational Research Society, 57, 1256-1257. doi:10.1057/palgrave.jors.2602211

Kourentzes, N. (2013). Intermittent Demand Forecasts with Neural Networks. International Journal of Production Economics, 143, 198-206. doi:10.1016/j.ijpe.2013.01.009

Kourentzes, N. (2014). On Intermittent Demand Model Optimisation and Selection. International Journal of Production Economics, 156, 180-190. doi:10.1016/j.ijpe.2014.06.007

Kourentzes, N., & Petropoulos, F. (2016). R: Package 'tsintermittent'. R package manual.

Lawrence, M. J., Edmundson, R. H., & O'Connor, M. J. (1986). The Accuracy of Combining Judgemental and Statistical Forecasts. Management Science, 32, 1521-1532. doi:10.1287/mnsc.32.12.1521

Lawrence, M., Goodwin, P., O'Connor, M., & Onkal, D. (2006). Judgmental Forecasting: A Review of Progress over the Last 25 Years. International Journal of Forecasting, 22, 493-518. doi:10.1016/j.ijforecast.2006.03.007

Leven, E., & Segerstedt, A. (2004). Inventory Control with a Modified Croston Procedure and Erlang Distribution. International Journal of Production Economics, 90, 361-367. doi:10.1016/S0925-5273(03)00053-7

Li, L., Kang, Y., Petropoulos, F., & Li, F. (2022). Feature-based Intermittent Demand Forecast Combinations: Accuracy and Inventory Implications. International Journal of Production Research. doi:10.1080/00207543.2022.2153941

Makridakis, S. (1993). Accuracy Measures: Theoretical and Practical Concerns. International Journal of Forecasting, 9, 527-529. doi:10.1016/0169-2070(93)90079-3

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). The M5 Competition: Background, Organization, and Implementation. International Journal of Forecasting, 38, 1325-1336. doi:10.1016/j.ijforecast.2021.07.007

Nagaria, P. (2017). Forecasting intermittent demand: Traditional smoothing approaches versus the Croston method. Forecasting intermittent demand: Traditional smoothing approaches versus the Croston method.

Palm, F. C., & Zellner, A. (1992). To Combine or not to Combine? Issues of Combining Forecasts. Journal of Forecasting, 11, 687-701. doi:10.1002/for.3980110806

Parackal, M., Goodwin, P., & O'Connor, M. (2007). Judgement in Forecasting (Editorial). International Journal of Forecasting, 23, 343-345. doi:10.1016/j.ijforecast.2007.05.004

Petropoulos, F., & Kourentzes, N. (2015). Forecast Combinations for Intermittent Demand. Journal of the Operational Research Society, 66, 914-924. doi:10.1057/jors.2014.62

Petropoulos, F., & Svetunkov, I. (2020). A Simple Combination of Univariate Models. International Journal of Forecasting, 36, 110-115. doi:10.1016/j.ijforecast.2019.01.006

Petropoulos, F., Fildes, R., & Goodwin, P. (2016). Do ‘Big Losses’ in Judgmental Adjustments to Statistical Forecasts Affect Experts’ Behaviour? European Journal of Operational Research, 249, 842-852. doi:10.1016/j.ejor.2015.06.002

Pinçe, Ç., Turrini, L., & Meissner, J. (2021). Intermittent Demand Forecasting for Spare Parts: A Critical Review. Omega, 105, 1-30. doi:10.1016/j.omega.2021.102513

Pour, A. N., Tabar, B. R., & Rahimzadeh, A. (2008). A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand. International Journal of Industrial and Manufacturing Engineering, 2, 1028-1034. doi:10.5281/zenodo.1075923

Qian, W., Rolling, C. A., Cheng, G., & Yang, Y. (2019). On the Forecast Combination Puzzle. Econometrics, 7, 1–26. doi:10.3390/econometrics7030039

Saccani, N., Visintin, F., Mansini, R., & Colombi, M. (2017). Improving Spare Parts Management for Field Services: A Model and a Case Study for the Repair Kit Problem. IMA Journal of Management Mathematics, 28, 185-204. doi:10.1093/imaman/dpw023

Sanders, N. R. (1992). Accuracy of Judgmental Forecasts: A Comparison. Omega, 20, 353-364. doi:10.1016/0305-0483(92)90040-E

Sanders, N. R., & Manrodt, K. B. (2003). The efficacy of using judgmental versus quantitative forecasting methods in practice. Omega, 31, 511-522. doi:10.1016/j.omega.2003.08.007

Sanders, N. R., & Ritzman, L. P. (1992). The Need for Contextual and Technical Knowledge in Judgmental Forecasting. Journal of Behavioral Decision Making, 5, 39-52. doi:10.1002/bdm.3960050106

Sanders, N. R., & Ritzman, L. P. (2001). Judgmental Adjustment of Statistical Forecasts. In J. S. Armstrong (Ed.), Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer, Dordrecht.

Sanders, N. R., & Ritzman, L. P. (2004). Integrating judgmental and quantitative forecasts: methodologies for pooling marketing and operations information. International Journal of Operations & Production Management, 24, 514-529. doi:10.1108/01443570410532560

Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (3rd ed.). John Wiley & Sons, New York.

Smith, J., & Wallis, K. F. (2009). A simple explanation of the forecast combination puzzle. Oxford Bulletin of Economics and Statistics, 71, 331-355. doi:10.1111/j.1468-0084.2008.00541.x

Surowiecki, J. (2005). The wisdom of crowds. Anchor Books, New York.

Syntetos, A. A. (2001). Forecasting of intermittent demand. PhD thesis, Business School Buckinghamshire Chilterns University College, Brunel University, UK.

Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International Journal of Production Economics, 71, 457-466. doi:10.1016/S0925-5273(00)00143-2

Syntetos, A. A., Babai, M. Z., & Gardner Jr., E. S. (2015). Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping. International Journal of Production Economics, 68, 1746–1752. doi:10.1016/j.jbusres.2015.03.034

Syntetos, A. A., Boylan, J. E., & Croston, J. D. (2005). On the categorization of demand patterns. Journal of the Operational Research Society, 56, 495–503. doi:10.1057/palgrave.jors.2601841

Syntetos, A. A., Nikolopoulos, K., Boylan, J. E., Fildes, R., & Goodwin, P. (2009). The effects of integrating management judgement into intermittent demand forecasts. International Journal of Production Economics, 118, 72–81. doi:10.1016/j.ijpe.2008.08.011

Teunter, R., & Duncan, L. (2009). Forecasting intermittent demand: a comparative study. Journal of the Operational Research Society, 60, 321–329. doi:10.1057/palgrave.jors.2602569

Timmermann, A. (2006). Forecast Combinations. In G. Elliott, C. W. Granger, & A. Timmermann (Eds.), Handbook of Economic Forecasting (Vol. 1, pp. 135–196). Elsevier. doi:10.1016/S1574-0706(05)01004-9

van Kampen, T. J., Akkerman, R., & van Donk, D. P. (2012). SKU classification: a literature review and conceptual framework. International Journal of Operations & Production Management, 32, 850–876. doi:10.1108/01443571211250112

Waller, D. (2015). Methods for Intermittent Demand Forecasting. Working Paper, Lancaster University.

Wallstrom, P., & Segerstedt, A. (2010). Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128, 625–636. doi:10.1016/j.ijpe.2010.07.013

Wang, X., Hyndman, R. J., Li, F., & Kang, Y. (2022). Forecast Combinations: An over 50-year Review. Preprint, arXiv.

Weinberg, C. B. (1986). Arts Plan: Implementation, Evolution, and Usage. Marketing Science, 5, 143–158. doi:10.1287/mksc.5.2.143

Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20, 375–387. doi:10.1016/S0169-2070(03)00013-X

Willemain, T. R., Smart, C. N., Shockor, J. H., & DeSautels, P. A. (1994). Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston’s method. International Journal of Forecasting, 10, 529–538. doi:10.1016/0169-2070(94)90021-3

Williams, T. M. (1984). Stock control with sporadic and slow-moving demand. The Journal of the Operational Research Society, 35, 939–948. doi:10.1057/jors.1984.185

Wilson, J. H., & Keating, B. (2008). Introduction to Business Forecasting. In J. H. Wilson, & B. Keating (Eds.), Business Forecasting with ForecastX (pp. 1-55). McGraw Hill-Irwin, New York.

Wright, T. C. (2013). Real Life Examples of Qualitative Forecasting. Real Life Examples of Qualitative Forecasting.