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This paper aims to assess the supply-side determinants of firm-level energy use. To

this end, we first propose a model for a stylized economy using Solovian framework,

in which the production function employs energy input, along with capital and labor.

We show the full algebraic solution of the model at the steady-state and in the transi-

tional period and derive the supply-side determinants of energy consumption. Then,

using firm-level micro panel data on the Turkish manufacturing industry from 2009 to

2015, we test the proposed model with static and dynamic panel data estimators. Our

empirical results suggest that the proposed model is consistent with Turkish manufac-

turing data. Out of the supply-side determinants, firms’ output/value-added and total

factor productivity, as a proxy for technological progress, are found to be the most

significant determinants of firm-level energy use. Estimations also reveal quite het-

erogenous effects of technology on energy use in different manufacturing subsectors.

Hence, although promoting technological change in the manufacturing industry is,

without a doubt, the most convenient way to reduce energy use, policymakers should

develop sector-specific incentives to achieve this goal.
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1 Introduction

Industrial sectors account for the largest share of global energy consumption. According

to the International Energy Agency, for instance, 38% of all global final energy use occurred

in industry sectors. (IEA, 2021). Moreover, most of the energy input employed in indus-

trial processes still originates from nonrenewable and greenhouse gas (GHG) emitting fossil

fuels. Hence, increasing energy efficiency, or decreasing energy intensity measured as energy

consumption per unit of output, in industrial sectors remains a key target in global efforts

towards mitigating climate change. To develop robust policies, it is essential for policy-

makers to understand the drivers of energy use in industrial sectors, particularly those with

higher energy intensity.
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Since Berndt & Wood (1975) seminal paper, the extensive literature on industrial energy

demand has developed in two main streams: (1) on substitution between energy and different

factors of production, namely capital and labor, following Griffin & Gregory (1976), and

(2) on micro-econometric analysis of energy demand in different industrial sectors, following

Woodland (1993). The literature within the second stream that conducts firm- or sectoral-

level analyses seems limited and is based on rather small samples. To the authors’ best

knowledge, out of studies on firm-level analyses, Bjørner et al. (2001) used the largest sample

of 2,949 Danish industrial firms over the period from 1983 to 1996. In contrast, Henriksson

et al. (2014) and Chaudhry (2016) relied on relatively smaller samples, respectively, of 9

Swedish mining firms over 1990-2005 and 402 Pakistani industrial firms over two years, 2002

and 2006/2007. Agnolucci (2009), moreover, employed sectoral level energy demand data for

British and German industrial sectors over the period 1978-2004 and 1991-2004, respectively.

Later Agnolucci & De Lipsis (2020) estimated fuel demand across UK industrial subsectors,

using aggregated data on eight subsectors between 1990 and 2014. Finally, Su (2018) used

data on 32 industrial and service sectors in Taiwan between 1998 and 2015. As expected, all

studies reported negative and significant effect of energy prices and technological progress

and positive and significant effects of economic activity, namely output or value-added, on

industrial energy use.

This article aims to contribute to the above-mentioned stream of literature by proposing

and empirically testing a theoretical framework to assess supply-side determinants of energy

use. To this end, we first develop a stylized model using the Solovian framework, show the

full algebraic solution of the model at the steady-state and in the transitional period, and

derive the determinants of energy use. Then, using firm-level micro panel data from the

Turkish manufacturing industry, we tested the proposed model empirically.

Our contribution to the literature is two-fold. Firstly, to the best of our knowledge, there

exists no similar model, as most studies are based on empirical analyses without providing a

theoretical framework. Hence, our study fills an important gap in the literature by proposing

a Solovian framework model and algebraically deriving supply-side determinants of energy

use. Secondly, as mentioned above, the majority of empirical studies use either aggregated

industry or sub-sectoral level data, while only a small minority use firm-level micro panel

data with small samples. Moreover, although there exist some Turkish studies on sectoral

energy consumption (Oğulata, 2002; Ediger & Huvaz, 2006) and on manufacturing energy

consumption (Soytaş & Sarı, 2007; Önüt & Soner, 2007; Bölük & Koç, 2010; Akyürek, 2020),

all of these use aggregated data.1 We, on the other hand, provide empirical evidence using

a large unbalanced micro panel data set of 29,892 Turkish manufacturing firms over the

period from 2009 to 2015. Our analyses would also provide significant policy implications

because our dataset allows us to conduct the estimations for 24 manufacturing subsectors

and, hence, to identify sub-sectoral heterogeneity.

Three main results are achieved in this paper. (1) Both steady-state and transitional

dynamics solution of the proposed stylized model leads to an equation representing supply-

side determinants of per labor energy consumption. All the variables derived from the

equation are found to be consistent with the literature. (2) Empirical estimations suggest

1 Authors are aware of only one unpublished study employing firm-level data on Turkish manufacturing
industry, namely Şahin (2017). Yet, the main objective of that study is to decompose manufacturing energy

consumption rather than deriving determinants of energy use.
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that the equation on supply-side determinants of energy use, developed within the proposed

stylized model, is found to be consistent with the Turkish manufacturing data. Results

suggest, in accordance with the previous literature, that while economic activity has a

positive and significant effect on firm-level energy use, technological progress, proxied by

total factor productivity, has a significantly negative effect. (3) Empirical results on Turkish

manufacturing sub-sectors suggest, moreover, that although technological progress has a

negative and significant effect in most subsectors, the effect is quite heterogenous depending

on the energy intensity structure, such that the estimated effect is smaller (larger) in more

(less) energy-intense sectors.

The current paper is structured as follows. In Section 2, the proposed model is described,

and a full algebraic solution of the model is provided. Section 3 is devoted to the empir-

ical analysis, namely data and methodology. In Section 4, empirical results, along with

discussions, are provided. Finally, Section 5 concludes with policy implications.

2 Model

Consider a stylized economy with the following Cobb-Douglas production technology:2

Yt = Kα
t R

β
t (At Lt)

(1−α−β) (1)

where the final good Yt is produced using physical capital Kt, energy resource Rt and

efficient labor At Lt. In equation (1), α and β represent the output elasticities of physical

capital and energy, respectively, and the dynamics of labor force and technological progress

are Lt = L0 ent and At = A0 ext, where L0 and A0 are initial values and n and x are

exogenous growth rates of technology and labor, respectively.

Assumption 1: Energy resource expenditure in the economy is financed via the saving

of output/income generated: Rt = sR Yt, where sR is the saving rate for energy resource

expenditure.3

Assumption 1 under closed economy without government will lead to following macroe-

conomic equilibrium:4

Yt −Rt = Ct + It (2)

where Ct is the consumption of final good, It is the gross investment with the form K̇t+δKt.

Noting that Yt − Ct = St, equation (2) can be re-written as:

St = sYt = K̇t + δKt + sRYt (3)

where s represents the composite saving rate with two components, namely saving rate for

energy resource expenditure (sR) and saving rate for physical capital accumulation (sK);

s = sR + sK .

2 The Cobb-Douglas form ensures that all factors of production are essential. Moreover, the homogeneity

of degree one assumption of the production function guarantees that the real profit is zero, a salient feature

of perfectly competitive markets.
3 We also implicitly assume that the economy under consideration is small, with relatively small demand of
energy resource; hence there exists an infinite stock of resource available.
4 Although this formulation of market clearing condition of final output is derived from Assumption 1, it

highly resembles that of proposed by Acemoğlu et al. (2012, equation 8 on p. 136).
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Equations (1) and (3) together imply the following capital accumulation function for the

stylized economy:

K̇t = sKKα
t R

β
t (At Lt)

(1−α−β) − δKt (4)

Capital accumulation function in (4) can be re-expressed in per efficient capita as follows:

˙̃
kt = sK ỹt − (n+ δ + x)k̃t (5)

where k̃t = Kt

At Lt
, r̃t = Rt

At Lt
, ỹt = Yt

At Lt
, and hence, ỹt = k̃αt r̃βt . Moreover, using

Assumption 1 in the production function leads to ỹt = k̃
α/(1−β)
t s

β/(1−β)
R and hence equation

(5) can be re-written as:

˙̃
kt = sK k̃

α/(1−β)
t s

β/(1−β)
R − (n+ δ + x)k̃t (6)

The standard steady-state (ss) solution procedure of this model will lead to:

k̃ss =

(
sK

(n+ δ + x)

)(1−β)/(1−α−β)

s
β/(1−α−β)
R (7a)

ỹss =

(
sK

(n+ δ + x)

)α/(1−α−β)

s
β/(1−α−β)
R (7b)

r̃ss =

(
sK

(n+ δ + x)

)α/(1−α−β)

s
(1−α)/(1−α−β)
R (7c)

Noting that r̃ss = Rss/(At Lt) and that At = A0 ext, taking natural logarithm of

equation (7c) will lead to

lnrss = lnA0+xt+

(
α

1− α− β

)
lnsK−

(
α

1− α− β

)
ln(n+δ+x)+

(
1− α

1− α− β

)
lnsR (8)

Moreover, the standard transitional period solution of the model will lead to the path of

r̃t:

r̃t =

[
sK s

(1−α)/α
R

(n+ δ + x)
+ const e−(n+δ+x)

(1−α−β)
α t

]α/(1−α−β)

(9)

Log-linearization and Taylor series approximation of (9) leads to the following conver-

gence equation for r̃t:

lnr̃t2 = e−vτ lnrt1 +

(
α

1− α− β

)
[1− e−vτ ] lnsK +

(
1− α

1− α− β

)
[1− e−vτ ] lnsR

−
(

α

1− α− β

)
[1− e−vτ ] ln(n+ δ + x)
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or for rt = Rt/Lt, the above equation could be re-written as:

lnrt2 = e−vτ lnr̃t1 +

(
α

1− α− β

)
[1− e−vτ ] lnsK +

(
1− α

1− α− β

)
[1− e−vτ ] lnsR

−
(

α

1− α− β

)
[1− e−vτ ] ln(n+ δ + x) + [1− e−vt] lnA0 + x(t2 − t1 e−vt)

(10)

where v = (1− α− β)/(1− β) (n+ δ + x) and τ = t2 − t1.

3 Empirical Analyses

Equations (8) and (10) derived in Section 2 will be used to empirically analyze supply-

side determinants of firm-level energy use in the Turkish manufacturing industry. The

model depicted in Section 2 is convenient for Turkish manufacturing data as, according

to Turkey’s Ministry of Energy and Natural Resources statistics (MENR, 2022), industrial

sectors with more than a one-third share in the country’s primary energy consumption are

the largest consumers of energy. Moreover, considering the firm-level characteristics of the

data set described in Section 3.1, an individual manufacturing firm’s energy input is financed

through the value of output generated by the firm. This is consistent with the Assumption

1 in Section 2.

3.1 Data

We use a firm-level panel dataset compiled from Annual Statistics on Industry and

Services provided by the Turkish Statistical Institute (TURKSTAT), involving unbalanced

panel data of 128,813 manufacturing firms over the 7 years between 2009 and 2015. The data

set provides various firm-level characteristics, including the number of employees, expendi-

tures on inputs, tangible and intangible investments, depreciation allowances, the value of

output and value-added generated. We first generated firm-level energy input (Rit) variable

using the energy expenditure data and real price index series provided by the International

Energy Agency (IEA) Energy Prices and Taxes database.5 Moreover, as both equation (8)

and equation (10) require technological progress variable, we calculate total factor produc-

tivity (TFP) for each firm following Olley & Pakes (1996):6

lnYit = β0 + β1lnKit + β2lnLit + β3Rit + β4lnMit + β5ait + uit

where Yit,Kit, Lit, Rit and Mit represent output, capital stock, labor, energy input and

material input of firm i in year t, respectively and ait is the age of the firm. The composite

error term uit is further described as:

uit = Ωit + ηit

5 All nominal monetary values are converted to real values using the Turkish Statistical Institute Domestic

Producer Price Index deflator data (2003=100) on the basis of manufacturing subsectors See: https://data

.tuik.gov.tr/Bulten/Index?p=Yurt-Ici-Uretici-Fiyat-Endeksi-Aralik-2021-45849. Last access date:
15.04.2022.
6 The authors are aware that there are numerous methods (parametric, semi-parametric and non-parametric)

to estimate firm-level total factor productivity. Yet, as the main objective of this research is to assess the

effects of various supply-side factors on firm-level energy use, we use this relatively simple method proposed
by Olley & Pakes (1996).

59

https://data.tuik.gov.tr/Bulten/Index?p=Yurt-Ici-Uretici-Fiyat-Endeksi-Aralik-2021-45849
https://data.tuik.gov.tr/Bulten/Index?p=Yurt-Ici-Uretici-Fiyat-Endeksi-Aralik-2021-45849


Berk & Yetkiner (2024), Vol. 10, No. 2

where Ωit captures the total factor productivity of firm i in year t, and ηit includes all

other uncontrollable factors (Yaşar et al., 2008). Since our data set provides no information

on existing capital stock for each firm, following Kılıçaslan et al. (2017), we employed the

following Perpetual Inventory Method (PIM) to generate firm-level capital stock series:

Ki,t = Ki,t−1 + Ii,t − δKi,t−1

where Ii,t represents investment in tangible assets of firm i in year t, and δ is the rate of

depreciation of capital stock.7

The calculations described above obtained an unbalanced firm-level micro panel data set

involving data of 29,892 manufacturing firms over the years between 2009 and 2015.8 The

firms in the data set operate in 24 different manufacturing subsectors according to NACE

Rev.2 classification.9 The largest sectors in terms of annual average number of firms are “14.

Manufacture of clothing”, “13. Manufacture of textile products”, “25. Manufacturing of

fabricated metal products (excluding machinery and equipment)”, and the smallest are “12.

Manufacture of tobacco products”, “19. Manufacture of coke and refined petroleum prod-

ucts” and “11. Manufacture of beverages”. In addition to the NACE Rev.2 classification,

firms are also classified by technology10 and size.11 According to technology classification,

approximately 49% of 29,892 companies in all years are in low technology sectors (tech=1),

27.5% in medium-low technology sectors (tech=2), and 21.5%, in medium-high technology

sectors. (tech=3) and only 2%, in high-tech sectors (tech=4). According to the size classifi-

cation, about 4.5% of all companies are micro enterprises (size=1), 47% are small enterprises

(size=2), 38% are medium-sized (size=3), and 10.5% are large enterprises (size=4). The

basic descriptive statistics of the key variables in the data set are given in Table 1.12

Table 1: Descriptive statistics of natural logarithms of key variables

Variable # of Observations Mean Std. Dev. Min. Max.

lnY 3,763 12.44 1.05 9.34 17.37

lnL 3,763 1.34 0.53 0.69 2.20
lnM 3,763 11.93 1.18 2.60 16.68

lnR 3,763 3.84 1.12 -5.70 9.18

lnK 3,763 10.95 1.44 3.78 16.92
lnVA 3,763 10.66 1.09 3.94 16.00

lnTFP 3,763 1.48 0.10 -1.05 2.20

Notes: VA and tfp represent value-added and total factor productivity, respectively.

7 We assumed constant annual depreciation rate of 7.5% and used depreciation allowances to calculate initial
capital stock Ki,0 following Kılıçaslan et al. (2017).
8 Due to the unavailability of investment data for most of the firms, we lost many observations during the
capital stock calculation.
9 https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF. Last access date:

18.04.2022.
10 https://ec.europa.eu/eurostat/cache/metadata/Annexes/htec esms an3.pdf. Last access date:

18.04.2022
11 https://data.oecd.org/entrepreneur/enterprises-by-business-size.htm. Last access date:
18.04.2022
12 One of the most frequently encountered issues in these types of micro panel data sets is the existence of

outliers. We observed that taking natural logarithm of the variables overcomes the issue of outliers.
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3.2 Methodology

Rewriting equation (8) for empirical purposes will lead:

lnrit = α+ β1lnsK,it + β2lnsR,it + β3ln(nit + δ + xit) + β4lnA0,it + β5xit + µi + ϵit (11)

where i and t represent the cross-section (29,892 firms) and time (7 years between 2009 and

2015) dimension of the panel dataset, and r is per labor energy input of the firm. Moreover,

n, δ, x and A0 represent labor growth rate, capital stock depreciation rate (assumed to

be constant at 7.5%), total factor productivity (TFV) growth rate and initial level of total

factor productivity of the firm, respectively, and µi and ϵit are individual fixed effects and the

idiosyncratic error term, respectively. Finally, sR and sK , which are respectively defined in

Section 2 as saving rate for energy resource expenditure and saving rate for physical capital

accumulation, can be further defined as energy input to output ratio, i.e., energy intensity,

and capital to output ratio considering the structure of the data set used. Hence, lnsR and

lnsK could further be re-written as lnsR = lnr − lny and lnsK = lnk − lny, respectively.

The equation (11) would then be reformulated as:

lnrit = α+ β1lnkit + β2lnyit + β3ln(nit + δ + xit) + β4lnA0,it + β5xit + µi + ϵit (12)

where k and y represent per worker capital stock and per worker output, respectively.13

Equation (12) would be estimated using Fixed Effects (FE) and Random Effects (RE)

estimators for both the manufacturing industry as a whole and for different company groups.

However, it is frequently suggested in the empirical literature that there exists evidence

pointing towards persistency in energy consumption (e.g., Narayan & Smyth (2007); Smyth

(2013); Bozoklu et al. (2020)). Such persistence requires dynamic modeling of firm-level

energy use. Equation (10), derived in Section 2, will be used to estimate this dynamic

nature. Rewriting equation (10) for empirical purposes will lead to:

lnrit = α+β1lnrit−1+β2lnkit+β3lnyit+β4ln(nit+δ+xit)+β5lnA0,it+β6xit+µi+ϵit (13)

Dynamic panel data model depicted in equation (13) will be estimated using the Dif-

ference GMM estimator proposed by Arellano & Bond (1991) and System GMM estimator

proposed by Arellano & Bond (1995) and Blundell & Bond (1998, 2000). Although both

equation (12) and equation (13) are directly derived from the model developed in Section

2, all independent variables included are in accordance with the previous literature. The

main independent variable used in almost all the empirical studies on modeling the energy

demand of industrial firms is either production/output (Henriksson et al., 2014; Chaudhry,

2016; Gutiérrez-Pedrero et al., 2018) or value-added (Bjørner et al., 2001; Su, 2018). Both

variables are expected to have a positive effect on energy demand. Another key variable

added to estimations in the literature is the energy price (Bjørner et al., 2001; Henriksson

et al., 2014; Su, 2018). Yet, as stated above, there is no firm-level energy price variable in

the data set on an individual firm basis, and the energy input is, in fact, calculated using

a real energy price index. Among other variables, capital stock is also one of the most

13 In empirical estimations, we use both per worker output (Model 1) and per worker value-added (Model

2) for the sake of completeness.
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frequently used explanatory variables in the literature (Gutiérrez-Pedrero et al., 2018). The

expected effect of capital stock depends on whether it is a substitute or complementary to

energy input. Finally, due to the fact that technological development will increase energy

efficiency and hence decrease energy consumption, total factor productivity has been used

as an indicator of technological development (Henriksson et al., 2014).

4 Results and Discussion

Table 2 presents the results of the estimation of equation (12) using output (Model 1)

and value-added (Model 2) as main independent variables with Pooled OLS (POLS), Fixed

Effects (FE) and Random Effects (RE) estimators. As expected, both the output (lny)

and the value-added (lnva) of the firm affect energy consumption positively and signifi-

cantly. According to the FE estimation results, output and value-added elasticity of energy

consumption are 0.490 and 0.126, respectively.14 Estimations also reveal, in accordance

with expectations, that TFP growth rate (lnx) affects energy consumption negatively and

significantly, such that a 1% increase in TFP of the firm decreases energy consumption by

0.659% and 0.369% in Model 1 and Model 2, respectively. Finally, we find that the capi-

tal stock variable (lnk) has a positive and statistically significant effect, while as expected

ln(n + δ + x) has a negative and statistically significant effect on energy consumption.

Table 2: Estimation of equation (12) using different estimators for the whole panel dataset

Dependent

Variable: lnr

Model 1 Model 2

POLS FE RE POLS FE RE

constant
-3.062*** -0.616*** -2.480*** -2.424*** 2.916*** -1.359***

(0.099) (0.199) (0.166) (0.098) (0.139) (0.170)

lny
0.445*** 0.386*** 0.490***

(0.008) (0.014) (0.010)

lnva
0.177*** 0.126*** 0.189***
(0.010) (0.009) (0.009)

lnk
0.255*** 0.028*** 0.107*** 0.332*** 0.038*** 0.144***

(0.005) (0.006) (0.005) (0.006) (0.006) (0.006)

x
-0.905*** -0.659*** -0.736*** -0.332*** -0.369*** -0.325***

(0.080) (0.058) (0.057) (0.078) (0.054) (0.052)

ln(n + δ + x)
0.101*** -0.257*** 0.042*** 0.088*** -0.365*** 0.001
(0.004) (0.016) (0.007) (0.004) (0.017) (0.008)

lnA0
-1.318*** NA -0.926*** -0.020 NA 0.633***
(0.075) NA (0.116) (0.075) NA (0.118)

# of observations 52,469 52,469 52,469 52,469 52,469 52,469

F/Wald Statistics 1,409.29*** 4,631.91*** 212.48*** 928.07*** 2,127.58*** 124.82***
Robust Hausman

χ2 Stat.

1,069.94*** 844.97***

Notes: *, ** and *** indicate 10%, 5% and 1% significance level, respectively. A full set of time dummies
is included in all estimations. Robust standard errors are given in parentheses. Robust Hausman test
is employed with the bootstrap method with 100 repetitions. In addition, the reason for the decrease
in the number of observations is the loss of one-year data while calculating the TFP growth rate, and

the reason for the decrease in the number of firms is the lack of TFP and value-added data in some
companies.

14 Robust Hausman Chi-square statistics are given under the RE estimator columns in the table. According
to Hausman tests, the RE estimator gives biased estimates. Besides, POLS estimator results are given for

comparison purposes only. Therefore, only the FE estimator results are discussed in the text.
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The results reported in Table 2 show that the equation derived via the Solow framework

can be verified using the whole panel of Turkish manufacturing firms. Estimating the equa-

tion (12) for different groups of firms would not only provide more evidence towards the

validity of the proposed model but also shed more light on the dynamics of firm-level energy

use in the Turkish manufacturing industry. To this end, estimation results for 24 manu-

facturing subsectors according to NACE classification are presented in Table 3.15 Similar

to the results for the whole panel, Table 3 shows that the effect of the output on energy

consumption is positive and statistically significant in every sector, except for “19. Man-

ufacture of coke and refined petroleum products”. The largest output elasticity of energy

consumption is recorded in subsectors “17. Manufacture of paper and paper products”,

“22. Manufacture of rubber and plastic products”, and “20. Manufacture of chemicals and

chemical products”.

Moreover, estimations reveal that the effect of TFP growth rate on energy consumption

is quite heterogenous in manufacturing subsectors. Although in most subsectors, i.e., 16 out

of 24, we find a negative and significant effect, the magnitude differs substantially. While the

largest and most significant effects are, respectively, recorded in subsectors “31. Manufacture

of furniture”, “22. Manufacture of rubber and plastic products”, “24. Manufacture of

basic metals”, the effect is insignificant in eight subsectors, including “11. Manufacture

of beverages”, “12. Manufacture of tobacco products” and “23. Manufacture of other

non-metallic mineral products”. This finding is particularly interesting since, in our panel,

subsector “23. Manufacture of other non-metallic mineral products” is the most energy-

intensive sector, while “31. Manufacture of furniture” is among those with the lowest energy-

intensity.16 Hence, technological progress, proxied by total factor productivity growth rate,

seems to have limited effect on manufacturing subsectors, whose production by nature is

energy intensive.

15 For the sake of space, we only provide estimation results of Model 1 hereafter. Results of Model 2 are
provided in the Appendix.
16 Please see https://www.eia.gov/outlooks/ieo/pdf/industrial.pdf. Last access date: 22.06.2022
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Table 3: Fixed Effects estimation results of equation (12) for different manufacturing subsectors (NACE): Model 1

Dependent

Variable: lnr

10 11 12 13 14 15 16 17 18 19 20 21

constant
-0.618 0.337 16.400* -0.490 -0.359 1.934*** -0.125 -1.546 -0.734 0.851 -0.673 0.168

(0.687) (2.275) (9.173) (0.610) (0.390) (0.712) (2.008) (1.599) (1.143) (4.028) (1.567) (2.561)

lny
0.411*** 0.409*** -0.744 0.396*** 0.317*** 0.204*** 0.359** 0.485*** 0.342*** 0.423 0.453*** 0.378**

(0.049) (0.137) (0.772) (0.041) (0.027) (0.050) (0.143) (0.118) (0.093) (0.334) (0.098) (0.152)

lnk
0.035* -0.018 0.240 0.022* 0.032** -0.002 0.055 0.046 0.004 0.006 -0.041 0.065
(0.018) (0.054) (0.302) (0.012) (0.015) (0.026) (0.034) (0.028) (0.019) (0.132) (0.028) (0.066)

x
-1.137*** 0.247 2.591 -0.619*** -0.328*** -0.620** -0.132 -0.954*** -0.613* -2.514* -1.086*** -0.580*
(0.237) (0.236) (2.030) (0.135) (0.112) (0.249) (0.470) (0.357) (0.348) (1.484) (0.347) (0.315)

ln(n + δ + x)
-0.282*** -0.308* -1.184** -0.172*** -0.269*** -0.422*** -0.298** -0.326*** -0.088 -0.846*** -0.258** -0.328*

(0.046) (0.176) (0.515) (0.055) (0.033) (0.064) (0.151) (0.094) (0.145) (0.266) (0.121) (0.173)
# of observations 4,954 398 66 6,255 6,914 1,167 653 1,528 843 155 1,812 472

F/Wald Statistics 32.16*** 4.56*** 5.32*** 34.58*** 56.64*** 12.10*** 6.05*** 9.97*** 4.30*** 5.36*** 11.91*** 7.55***

22 23 24 25 26 27 28 29 30 31 32 33

constant
-0.807 -1.548 -0.677 0.451 2.525* -0.068 0.636 -0.451 0.098 -0.850 1.669* -2.426

(0.707) (1.087) (1.193) (0.541) (1.385) (1.144) (0.644) (0.818) (2.617) (0.788) (0.932) (2.047)

lny
0.473*** 0.534*** 0.429*** 0.311*** 0.188** 0.336*** 0.246*** 0.365*** 0.344** 0.411*** 0.109* 0.287***
(0.055) (0.079) (0.083) (0.042) (0.086) (0.076) (0.045) (0.060) (0.140) (0.060) (0.064) (0.090)

lnk
0.028 0.025 0.035 -0.002 0.026 0.026 0.034* 0.008 -0.074 0.012 0.006 0.239*
(0.019) (0.0322) (0.025) (0.014) (0.029) (0.020) (0.018) (0.022) (0.185) (0.019) (0.037) (0.123)

x
-1.231*** -0.141 -1.173*** -0.554*** -0.153 -0.536* -1.005*** -0.492** -0.789 -1.464*** -0.206 -0.657
(0.429) (0.196) (0.399) (0.182) (0.373) (0.282) (0.199) (0.206) (0.521) (0.283) (0.172) (0.524)

ln(n + δ + x)
-0.349*** -0.204** -0.257*** -0.312*** -0.524*** -0.340*** -0.336*** -0.203*** -0.096 -0.344*** -0.131 -0.214

(0.041) (0.081) (0.091) (0.045) (0.107) (0.100) (0.058) (0.072) (0.176) (0.068) (0.110) (0.186)
# of observations 4,028 3,423 1,996 5,138 637 2,490 4,617 2,424 494 2,100 1,249 358
F/Wald Statistics 51.03*** 11.08*** 9.05*** 19.99*** 8.89*** 14.70*** 19.94*** 14.48*** 2.51** 16.58*** 7.84*** 5.28***

Notes: *, ** and *** indicate 10%, 5% and 1% significance level, respectively. A full set of time dummies is included in all estimations. Robust

standard errors are given in parentheses.
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Table 4 shows estimation results for different firm groups by technology level and size.

Estimated parameters for output elasticity of energy consumption are positive and signifi-

cant, and those for TFP are negative and significant for all groups except for micro-sized

enterprises (size=1). Similar to the discussions above, the magnitude of the effect of the

TFP variable on different firm groups is heterogenous, with the highest being for firms in

the medium-high technology level (tech=3) group.

Table 4: Fixed Effects estimation results of equation (12) for firm groups by technology and size: Model 1

Dependent

Variable: lnr

Technology Size

Tech=1 Tech=2 Tech=3 Tech=4 Size=1 Size=2 Size=3 Size=4

constant
-0.367 -0.609 -0.132 1.621 -2.297 -0.289 -0.238 -0.311

(0.248) (0.410) (0.480) (1.177) (2.557) (0.288) (0.320) (0.748)

lny
0.351*** 0.425*** 0.337*** 0.265*** 0.144 0.337*** 0.368*** 0.421***

(0.018) (0.030) (0.034) (0.072) (0.185) (0.021) (0.022) (0.050)

lnk
0.034*** 0.024** 0.009 0.047 0.378*** 0.026*** 0.028*** 0.018
(0.007) (0.011) (0.014) (0.030) (0.128) (0.008) (0.009) (0.017)

x
-0.576*** -0.626*** -0.835*** -0.392* -0.062 -0.651*** -0.602*** -0.632***

(0.069) (0.126) (0.151) (0.223) (0.562) (0.086) (0.081) (0.241)

ln(n + δ + x)
-0.242*** -0.290*** -0.268*** -0.451*** -0.255 -0.280*** -0.286*** -0.233***

(0.021) (0.031) (0.039) (0.094) (0.320) (0.035) (0.024) (0.052)

# of observations 26,127 15,098 11,837 1,109 264 21,725 24,684 7,498
# of firms 7,704 4,495 3,516 330 185 8,584 7,970 2,003

F/Wald Statistics 115.39*** 61.52*** 38.26*** 11.49*** 4.86*** 50.83*** 84.06*** 31.31***

Notes: *, ** and *** indicate 10%, 5% and 1% significance level, respectively. A full set of time dummies

is included in all estimations. Robust standard errors are given in parentheses.

GMM estimation results of equation (13) with both one-step (one-step) and two-step

(two-step) Difference and System GMM methods are provided in Table 5.17 Our micro-

panel data is suitable for GMM approaches, which are generally designed for panels with

short time and large cross-sectional dimensions (Roodman, 2009a). Moreover, as a rule of

thumb, GMM estimators require the number of groups to be larger than the number of

instruments (Roodman, 2009b), which is not an issue in micro-panels such as ours. The

results of the other post-estimation tests, namely Hansen J-test (Hansen, 1982), Difference-

in-Hansen test (Blundell & Bond, 1998) and second- or third-order serial correlation tests

(Arellano & Bond, 1991) are provided in the lower panel of the table.

Results shown in Table 5 suggest that the coefficient of lnrt−1 is negative and statisti-

cally significant in the Difference GMM estimation. This result is quite surprising because it

would not be expected that the previous year’s energy consumption would decrease a firm’s

current energy consumption. This result, along with the Hansen J-test rejecting the null

hypothesis at a 10% significance level, brings into question the reliability of the Difference

GMM estimation. In addition, it is seen that the coefficient of lnrt−1 is positive and statis-

tically significant, as expected in the System GMM estimation. However, in the Difference

GMM estimation, the coefficient of the output lny is positive and insignificant, whereas in

the System GMM estimation, contrary to expectations, it is negative and significant. The

only possible explanation is that the dependent variable lnr is mainly explained by its first

lag, lnrt−1. The fact that the coefficient of lnrt−1 is very close to 1, especially the two-

stage system GMM estimation, suggests that the energy consumption series in our dataset

17 In all of these estimations, Model 1, namely output as the main independent variable, is considered.
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Table 5: Estimating equation (13) with GMM methods

Dependent

Variable lnr

Difference GMM System GMM

One Step Two Step One Step Two Step

lnrt−1
-0.075** -0.080** 0.878*** 0.905***

(0.035) (0.035) (0.125) (0.110)

lny
0.073 0.056 -0.220** -0.204**

(0.086) (0.085) (0.095) (0.079)

lnk
-0.046*** -0.049*** 0.038 0.035

(0.015) (0.014) (0.025) (0.023)

x
-0.386*** -0.343*** -0.971*** -0.887***
(0.091) (0.088) (0.343) (0.305)

ln(n + δ + x)
-0.783*** -0.793*** -0.001 0.009

(0.169) (0.165) (0.020) (0.018)

# of observations 25,648 25,648 37,757 37,757
# of Firms (Groups) 9,369 9,369 11,998 11,998

# of Instruments 27 27 30 30

Wald statistics 221.41*** 217.13*** 439.39*** 438.42***

AR(2) test z- statistics
-1.53 -1.65 3.48 4.22

(0.126) (0.100) (0.000) (0.000)

AR(3) test z- statistics
-0.25 -0.25

(0.800) (0.805)

Hansen J-test
26.21 26.21 24.91 24.91

(0.095) (0.095) (0.205) (0.205)

Difference-in-Hansen test
7.21 7.21 3.24 3.24

(0.125) (0.125) (0.518) (0.518)

Notes: *, ** and *** indicate 10%, 5% and 1% significance level, respectively. A full set of

time dummies is included in all estimations. Robust standard errors are given in parentheses
for the estimated coefficients. Probability values (p-values) are given in parentheses for

AR(2), AR(3), Hansen J- and Difference-in-Hansen tests. When the result of the AR(2)

test showed that the serial correlation problem was not solved, estimations carried out with
deeper lag lengths, hence in these cases, the AR(3) test statistics are also provided. Number

of firms decline significantly due to the unavailability of lagged energy consumption data for
many firms.

is highly persistent, as suggested by previous literature (Narayan & Smyth, 2007; Smyth,

2013). Another issue that emerged in the system GMM estimations is that the coefficients

of the lnk and (n + δ + x) variables are statistically insignificant, but the effect of the

TFP growth rate variable (x) is negative and highly significant, similar to the findings in

the FE estimation of equation (12).

5 Conclusions and Policy Implications

In this paper, we proposed a model for a stylized economy in which energy resource, along

with capital and labor, is a factor of production. Full algebraic solution of the model at the

steady-state and in the transitional period led us to identify the supply-side determinants of

energy consumption. Then, we used firm-level micro panel data on Turkey’s manufacturing

industry to test the proposed model empirically.

When all empirical results are considered together, the model we propose is found to be

consistent with the data. Particularly, Fixed Effects estimation results on the whole panel

suggest that all key variables proposed by the model are statistically significant. Moreover,

we found, in accordance with the previous empirical literature, that while firms’ output and

value-added positively affect firm-level energy use, technological progress proxied by total
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factor productivity has a negative effect. We also tested the proposed model using data

on different firm groups classified by manufacturing subsectors, technology level and size.

Results, achieved especially for manufacturing subsectors, are of significant importance for

policymakers since, despite a negative effect for total factor productivity variable in almost

all subsectors, the effect is quite heterogenous. In fact, we found that in sectors with high

energy intensity, technological progress has only limited effect in decreasing energy use.

Hence, although our model and empirical results point out that promoting technological

progress is an effective way to reduce manufacturing energy consumption, and therefore

policymakers should focus on designing subsector-specific policies accordingly.

This finding is particularly important for policymakers in Turkey, which has a relatively

long history of endeavor towards decreasing energy consumption via promoting energy ef-

ficiency due its heavy reliance on imported energy.18 Industrial sectors are the largest

contributors to energy consumption, and attempts are made to increase energy efficiency

and, hence, decrease energy consumption in these sectors. For instance, the goal of “re-

ducing energy intensity in each industrial sub-sector by not less than 10%” was emphasized

in both 2012 Energy Efficiency Strategy Document (MENR, 2012), which covers the pe-

riod between 2012 and 2023 and the 2017 National Energy Efficiency Action Plan (MENR,

2017), which covers the period between 2017 and 2023, Yet, when total energy intensity of

industry is considered, these targets seem inadequate in achieving an energy-efficient indus-

try. The period between 2003 and 2012 saw industrial energy intensity decline almost 50%,

but from 2013 until 2020, it showed a slight increase (MENR, 2022; TURKSTAT, 2021).

Hence, a new perspective is needed which specifies heterogenous targets for individual in-

dustrial sectors. Our findings suggest that policymakers should differentiate these targets

considering the energy intensity dynamics of each subsector. Bearing in mind that fossil

fuels still constitute the largest share in Turkey’s primary energy consumption and that

EU countries account for more than 42% of Turkey’s total exports (TURKSTAT, 2021),

achieving larger declines in energy consumption would further help the country to mitigate

the adverse effects of the upcoming Carbon Border Adjustment Mechanism proposed within

the framework of European Green Deal’s “Fit for 55” package (EC, 2021).
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Acemoğlu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environ-
ment and directed technical change. American Economic Review , 102 (1), 131-166.
doi:10.1257/aer.102.1.131

Agnolucci, P. (2009). The energy demand in the British and German industrial
sectors: Heterogeneity and common factors. Energy Economics, 31 (1), 175-187.
doi:10.1016/j.eneco.2008.08.005

Agnolucci, P., & De Lipsis, V. (2020). Fuel demand across UK industrial subsectors. The
Energy Journal , 41 (6), 65–86. doi:10.5547/01956574.41.6.pagn
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Appendix

Table A.1: Fixed Effects estimation results of equation (12) for different manufacturing subsectors (NACE): Model 2

Dependent Variable: ln r 10 11 12 13 14 15 16 17 18 19 20 21

constant
3.691*** 3.681** 9.405* 3.497*** 1.956*** 3.513*** 3.938*** 3.644*** 2.268** 4.303** 4.560*** 3.955***
(0.352) (1.433) (4.405) (0.378) (0.356) (0.778) (1.132) (0.654) (1.064) (1.865) (0.945) (1.386)

lnva
0.102*** 0.202*** -0.227 0.100*** 0.156*** 0.087 0.067 0.101** 0.119 0.183 0.097* 0.158***
(0.022) (0.070) (0.213) (0.027) (0.027) (0.085) (0.084) (0.044) (0.117) (0.171) (0.056) (0.051)

lnk
0.042** -0.026 0.169 0.033** 0.043*** 0.000 0.077** 0.067** 0.004 0.008 -0.034 0.061
(0.019) (0.057) (0.217) (0.013) (0.015) (0.030) (0.035) (0.027) (0.021) (0.139) (0.029) (0.064)

x
-0.739*** 0.104 1.817 -0.358*** -0.160 -0.370 0.329 -0.595** -0.433 -1.709* -0.816** -0.366
(0.226) (0.218) (1.331) (0.139) (0.109) (0.272) (0.375) (0.299) (0.336) (0.979) (0.330) (0.245)

ln(n + δ + x)
-0.415*** -0.445** -1.020** -0.301*** -0.354*** -0.457*** -0.498*** -0.508*** -0.163 -0.878*** -0.465*** -0.501***
(0.046) (0.175) (0.450) (0.056) (0.037) (0.063) (0.138) (0.094) (0.1456) (0.266) (0.111) (0.143)

# of observations 4,954 398 66 6,255 6,914 1,167 653 1,528 843 155 1,812 472
# of firms 1,486 116 15 1,754 2,160 335 217 436 269 52 537 131
F/Wald Statistics 21.59*** 3.09*** 4.74*** 19.96*** 37.01*** 8.61*** 5.45*** 8.01*** 3.51*** 4.54*** 7.57*** 7.42***

22 23 24 25 26 27 28 29 30 31 32 33

constant
3.676*** 4.077*** 4.026*** 3.597*** 4.915*** 3.381*** 2.609*** 2.140*** 3.6192 2.692*** 1.754*** 0.866
(0.435) (0.654) (0.762) (0.358) (0.816) (0.748) (0.382) (0.584) (2.889) (0.570) (0.639) (1.755)

lnva
0.168*** 0.112*** 0.067 0.066** 0.010 0.070* 0.105*** 0.190*** 0.024 0.121*** 0.144*** -0.030
(0.036) (0.043) (0.056) (0.028) (0.0489) (0.041) (0.033) (0.032) (0.063) (0.046) (0.055) (0.141)

lnk
0.029 0.048 0.051** 0.008 0.031 0.032 0.033* 0.003 -0.029 0.023 -0.014 0.278*
(0.019) (0.033) (0.025) (0.014) (0.030) (0.021) (0.019) (0.023) (0.183) (0.019) (0.041) (0.143)

x
-0.825** 0.084 -0.681** -0.245 0.134 -0.213 -0.804*** -0.384* -0.395 -0.917*** -0.189 -0.527
(0.409) (0.200) (0.340) (0.154) (0.318) (0.231) (0.182) (0.197) (0.444) (0.271) (0.157) (0.488)

ln(n + δ + x)
-0.525*** -0.419*** -0.367*** -0.411*** -0.596*** -0.420*** -0.392*** -0.251*** -0.136 -0.421*** -0.152 -0.268
(0.043) (0.079) (0.086) (0.047) (0.105) (0.115) (0.056) (0.082) (0.171) (0.073) (0.107) (0.184)

# of observations 4,028 3,423 1,996 5,138 637 2,490 4,617 2,424 494 2,100 1,249 358
# of firms 1,184 995 564 1,644 199 760 1,457 665 159 670 389 152
F/Wald Statistics 38.13*** 6.02*** 6.32*** 14.56*** 6.92*** 8.72*** 16.75*** 12.14*** 2.58*** 11.04*** 8.12*** 3.26***
Notes: Robust standard errors are given in parentheses, and *, ** and *** indicate 10%, 5% and 1% significance level, respectively. A full set of time dummies

is included in all estimations.
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