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Aysun Kapucugi̇l İki̇za Gi̇zem Hali̇l Utmab

Received: 20.11.2022; Revised: 30.12.2022; Accepted: 03.01.2023

Effective inventory management requires accurate forecasts for stock-keeping units

(SKUs), especially for the strategic ones for companies’ operations and after-sales

services like providing spare parts. Forecasting is a challenging task for such SKUs as

they usually have intermittent demand (ID) patterns, consisting of many periods with

zero demand and infrequent demand arrivals. Given the highly uncertain nature of ID

for SKUs, this study developed a methodological framework for combining statistical

and judgmental forecasts and assessed the performance of the proposed framework by

using accuracy and bias measures. The forecasting process has several steps, including

data preparation, data categorization based on demand patterns, generating statistical

and judgmental forecasts, combining statistical and judgmental forecasts, and evaluat-

ing the forecast performance. These steps were illustrated on a real-world dataset that

contains monthly customer demand data for after-sales spare parts. Results showed

that combination is the best method for the majority of SKUs. This paper contributes

to the limited literature by addressing the gap between the combined and ID forecasts.

The proposed framework gives practitioners and researchers a comprehensive overview

to help them make more accurate forecasts while encouraging the use of simple but

structured approaches.

JEL codes: C44, C53, M11

Keywords: Statistical forecasting, Judgmental forecasting, Combining forecasts, Intermittent de-
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1 Introduction

Intermittent demand (ID) is characterized by infrequent demand arrivals separated by

zero-demand time intervals, and its size varies greatly depending on demand, going from

thousands of units per month to a few per year. At any point in the supply chain, such

demand patterns can be used to describe spare parts and stock-keeping units (SKUs), such

as finished goods or semi-finished products, in the product line (Syntetos, 2001). The ID

pattern is common in sectors such as aerospace, automotive, maritime, security, information

technology, industrial production, and retail (Syntetos & Boylan, 2001; Ghobbar & Friend,
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2003; Willemain et al., 2004). Also, for products that are at the end of their life cycle,

this pattern typically occurs (Nagaria, 2017). Such SKUs may be fast or slow movers.

Because of the intermittency of demand, companies hold a large and unnecessary amount

of inventory. They might account for as high as 60% of total stock value (Johnston et al.,

2003), and stock-outs (for example, spare parts in aerospace) frequently imply enormous

costs, i.e., very costly operational breakdowns (Babai et al., 2019; Ghobbar & Friend, 2003).

On the other, holding costs can be quite high, especially given the products’ high risk of

obsolescence (Saccani et al., 2017). As a result, minor improvements in forecasting demand

for such SKUs may result in significant cost savings. However, due to the complex structure

of these SKUs, forecasting with traditional methods is a challenging task, and they require

specialized methods to generate more accurate predictions.

Several forecasting methods have been proposed to overcome the problems caused by

the ID and generate more accurate forecasts. Starting with the pioneering study of Croston

(1972), the literature has grown with many modifications of Croston’s method (CR), such as

Syntetos-Boylan Approximation (SBA) (Syntetos & Boylan, 2001), Teunter-Syntetos-Babai

(TSB) method (Teunter & Duncan, 2009), and Levén & Segerstedt (2004) modification.

Some nonparametric alternative approaches like Bootstrapping (Willemain et al., 2004; Hua

et al., 2007; Hasni et al., 2019) and Artificial Neural Network models (Gutierrez et al., 2008;

Pour et al., 2008; Kourentzes, 2013) are also proposed.

Statistical forecasting methods, on the other hand, are incapable of capturing contextual

factors, such as spare parts, maintenance schedules, equipment age, and operating condi-

tions. Even if they are based on historical data containing contextual information, they may

take a while to adapt to changes in demand brought on by context-specific dynamics.

The use of contextual knowledge is essential in judgmental forecasting methods. There

are two ways of using judgments in forecasting. One involves making direct forecasts based

on judgment, and the other involves building forecasts using individual judgments. These

two applications of judgment are used in various fields, including macroeconomic forecasting,

business forecasting, political forecasting, and sports events forecasting (Parackal et al.,

2007). Researchers have been paying more attention to these forecasting techniques over

the past two decades (Pinçe et al., 2021). Sanders & Ritzman (1992) indicates that as

the variability of the time series data increases, the judgmental forecasts generated by the

practitioners may be beneficial. The accuracy of judgmental forecasts improves when the

analyst has pertinent contextual knowledge, knowledge gained through experience with the

forecasting environment, and up-to-date information (Lawrence et al., 2006). Otherwise,

when they have limited access to quantifiable information, forecasters excessively emphasise

their subjective contributions (Sanders & Manrodt, 2003; Franses & Legerstee, 2010) or

repeatedly make bold adjustments based on false information (Petropoulos et al., 2016).

Therefore, the judgmental forecasts may be biased and could reduce the forecast’s accuracy.

Judgmental forecasts are used in three different settings. When statistical forecasts

cannot be used because there is no data available, the only method left is judgmental fore-

casting. When data is available, a forecaster may use it to produce statistical forecasts;

however, these predictions may later be subject to judgmental adjustment based on contex-

tual knowledge. The final setting combines independent forecasts that were produced using

statistical and judgmental methods. The latter is the subject of this research.
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As seen from review studies (Clemen, 1989; Timmermann, 2006; Wang et al., 2022),

combinations of forecasts have made significant academic strides recently, emerging as a

cornerstone of forecasting research. In many cases, combining forecasts is a better approach

than identifying a single best forecast, as constituent forecasts often use information from

different sources. Furthermore, individual forecasts are subject to model bias from unknown

model misspecifications and varyingly affected by structural breaks in the data generating

process (Qian et al., 2019). These are commonly referred to as “combination forecasts” or

“ensemble forecasts” (Wang et al., 2022).

The literature suggests a wide range of sophisticated combination techniques. As Li

et al. (2022) stated, the simple average continually outperforms more complex weighting

schemes in empirical studies like Chan & Pauwels (2018) and is still an unbeatable forecast

combination technique. In the literature, this phenomenon is called a “forecast combination

puzzle” (Claeskens et al., 2016; Smith & Wallis, 2009). In general, each combination method

has advantages and disadvantages and which combination method should be used depends on

several factors. Besides, there is still disagreement over the forecast combination technique

that works best in a particular situation (Li et al., 2022; Wang et al., 2022).

In the context of forecasting ID, even though there is growing research (Pinçe et al., 2021),

forecast combinations have largely gone unnoticed (Li et al., 2022). Specifically, there is very

limited discussion on the combination of statistical and judgmental forecasts for ID in the

literature. Therefore, given the highly uncertain nature of ID for SKUs, this research aims to

develop a methodological framework for combining statistical and judgmental forecasts and

assess the proposed framework’s performance by using accuracy measures. It is expected to

present the overall process that connects combined and ID forecasting.

The rest of the paper is organized as follows. Section 2 presents relevant literature on

combining forecasts and ID characteristics. The proposed framework for forecasting ID is

described in a six-staged model in Section 3, and Section 4 explains how to combine statis-

tical and judgmental forecasts. Section 5 illustrates the framework on real-world data that

contains monthly customer demands for after-sales spare parts from an anonymous company

operating in the electronics industry, manufacturing small home appliances. Finally, Section

6 concludes with the limitations of this study and recommendations for future research.

2 Relevant Literature

The section begins with a review of the literature on combining forecasts, which serves

as the foundation for this study. Following that, ID patterns and associated categorization

schemes are presented.

2.1 Combining Forecasts

The concept of combining several individual forecasts dates back to the 1960s when

British scientist Francis Galton visited an ox weight-judging competition in which eight

hundred people competed, most of whom were non-experts with varying abilities. Galton

examined the 787 valid estimates provided by the contestants and discovered that the over-

all mean of the estimates, which represents the collective wisdom of the crowd, is nearly

perfect (Surowiecki, 2005). About 60 years after Bates & Granger (1969)’s well-known work

popularized the concept, a voluminous literature on forecast combinations emerged (Wang

et al., 2022). After this, Clemen (1989), which summarizes a significant amount of research
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from different fields, can be seen as a milestone on this topic.

Forecast combination, as a term, describes “the combination of forecasts to generate a

better forecast; the component forecasts could be outcomes from model averaging, individ-

ual models, or expert forecasts” (Wang et al., 2022). Combining forecasts can be done by

using some mechanical rules like averaging the included forecasts to the combination pro-

cess (Lawrence et al., 2006). Clemen (1989) suggested that simply averaging the forecasts

by using equal weight (i.e., 1/M where M denotes the number of forecasting methods to

be combined) should be used as a basis when proposing more complex weighting schemes.

Combination schemes range from simple methods that avoid weight estimation to sophis-

ticated methods that tailor weights for various individual models, including model-free or

model-fitting, linear or nonlinear, static or time-varying, series-specific or cross-learning,

and frequentist or Bayesian (Wang et al., 2022).

Complex averaging methods have been proposed for combining forecasts, but they have

yet to be successful (Green & Armstrong, 2015). Empirical evidence still shows that the

simple average is much more successful (Li et al., 2022). Although the simple average can re-

duce forecast variance and remove uncertainty in weight estimation (Palm & Zellner, 1992),

it is a sensitive statistic in extreme values. As a result, other strong combinations utilizing

the median and trimmed means have received some attention (Petropoulos & Svetunkov,

2020). The organizers of the M5 competition, centered on sales forecasts using a large num-

ber of intermittent time series, recently used the simple average of exponential smoothing

and ARIMA as the combination benchmark, which performed better or equally well as the

individual methods that constituted them (Makridakis et al., 2022).

As each combination method has its own merits, which combination method should

be used depends on the kind of forecasts (deterministic, probabilistic, quantile, etc.), the

size and quality of the model pool, the available information, and the particular forecasting

issues (Wang et al., 2022). However, there is still disagreement over the forecast combination

technique that works best in a particular situation (Li et al., 2022; Wang et al., 2022).

When the constituents of forecast combination come from judgmental and statistical

methods, techniques that combine these two categories of forecasts include their simple

average, judgmental bootstrapping (i.e., a type of expert system that converts expert rea-

soning into a set of explicit rules, Armstrong, 2001a), and statistical techniques that aim to

eliminate systematic biases from judgemental forecasts (Parackal et al., 2007).

Among studies using these techniques, Lawrence et al. (1986) investigated the effective-

ness of combining forecasts for time series with various forecasting difficulty and seasonality

levels. They found out that for series with low MAPE, the combination is more effective

and seasonality has no influence on the benefits of the combination. Working on the effects

of difficulty levels of series with a coefficient of variance instead of MAPE, Sanders (1992)

also found out that combining forecasts is most effective for simpler series. For harder series,

combined forecasts are less accurate than judgmental forecasts because judgments can gen-

erate better forecasts than statistical models. Weinberg (1986) worked on the forecasts for

attendance at events. In his study, by using an econometric model, ex-ante forecasts were

generated. Also, managers generated forecasts by using their judgment. Results showed that

the econometric model provided more accurate results than managers’ judgment. However,

the accuracy of the combination of the econometric model and judgment was superior to

both model and judgment alone.
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There are some studies showing that adjusting the statistical forecast by using judg-

ments increases the accuracy in the forecasting of ID (e.g., Syntetos et al., 2009; Davydenko

& Fildes, 2013). However, adjustments are subject to biases and may harm the forecast

accuracy (Eroğlu & Croxton, 2010). Mechanically integrating statistical and judgmental

methods should be preferred to avoid such biases (Sanders & Ritzman, 2001).

The combination of statistical and judgmental forecasts for ID has rarely been discussed

in the literature, such that only the simple averaging method has been used to improve

the forecasting (Petropoulos & Kourentzes, 2015). Especially for highly ID patterns, Bates

& Granger (1969) found that using weighted forecast combinations causes the covariance

matrix of forecast errors to be singular. As the obtained errors may contain a large number

of zero values, it is impossible to calculate this matrix’s inverse. A similar issue is also valid

for regressive approaches. Thus, many sophisticated forecasting methods are inapplicable

due to the numerous zeros and non-smooth patterns present in ID.

2.2 Intermittent demand patterns

Syntetos (2001, p. 365) stated that “infrequent demand occurrences and variable demand

size when demand occurs mean demand to be non-normal since demand per unit period

or lead time demand cannot be represented by the normal distribution”. The literature

proposes various forecasting methods for different non-normal demand patterns. Specifying

and categorizing the demand patterns according to their similarities is essential to find the

best-performing forecasting method, which provides the highest forecasting accuracy.

Williams (1984) proposed to categorize the patterns based on the idea of variance par-

tition of the demand during lead time as “variance of the demand sizes”, “transaction

variability”, and “variance of the lead times”, and classified the SKU demand into three

categories: smooth, slow-moving, and sporadic. After this study, several authors proposed

different categorizations to determine the best-performing forecasting methods and inven-

tory control parameters.

Two parameters -“the average inter-demand interval” (p) and “the square of the coef-

ficient of variation” (CV 2)- are used to determine the characteristics of demand data. p

shows the regularity of demand by measuring the average number of periods between two

non-zero demands, and it is calculated as follows.

p =

∑
Intervals between non− zero demand periods

Number of non− zero demand periods
(1)

The coefficient of variation (CV), on the other hand, measures the variation in the

demand size and is calculated as follows.

CV =
Standard deviation of demand values

Average demand over periods
(2)

Johnston & Boylan (1996) showed that Croston (CR) method outperforms the Expo-

nentially Weighted Moving Average (EWMA) for p values greater than 1.25 review periods

and mentioned that these SKUs have ID patterns. The authors were the first ones to for-

mally confirm the importance of the value of p as a classification parameter (van Kampen

et al., 2012). Eaves (2002) reclassified the SKUs in the dataset by modifying Williams

(1984)’s classification as smooth, irregular, slow-moving, mildly intermittent, and highly

intermittent. However, as the cut-off values of this categorization are solely dependent on
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the properties of the underlying dataset and adequate subsample size considerations, it is

not widely applicable.

Syntetos et al. (2005) compared EWMA, CR, and Syntetos-Boylan Approximation (SBA)

methods based on the theoretical analysis of the Mean Square Error (MSE) to determine the

regions of superior performance and define the demand patterns accordingly. They devel-

oped a model of four demand categories: “erratic”, “lumpy”, “smooth”, and “intermittent”,

as shown in Figure 1. The categorization scheme proposed by the authors is based on p

and the CV 2 of demand sizes. Comparing the theoretical MSE values of EWMA, CR and

SBA, the cut-off values are determined as p=1.32 and CV 2=0.49. Syntetos-Boylan-Croston

(SBC) scheme was empirically tested using 3,000 SKUs from a company operating in the

automotive industry, and the validity is confirmed. Syntetos et al. (2005) contributed to the

identification of CV 2 as a new categorization parameter for demand forecasting purposes.

Lastly, Kostenko & Hyndman (2006) developed the KH scheme as an extension of the

SBC scheme, which is more accurate and simpler. The authors suggested using the SBA

method in a smooth pattern if (CV )2 > 2 − (3/2)p. According to the KH categorization

scheme, for SKUs with CV 2 value of 0.4 and p value of 1.25, SBA is used, while the SBC

categorization scheme suggests using CR for the same SKUs.

Figure 1: Demand Patterns

Source: Constantino et al. (2018, p.59)

SKUs with smooth demand patterns show a regular demand over time, and the non-

zero demand size shows little variation. Infrequent demand occurrences may be defined as

intermittent (or sporadic) demand. Intermittence refers to the occurrence of the demands

but not the sizes of the occurring demands. For this type of demand, the average time

between consecutive transactions is significantly longer than the unit period, the latter being

the period for updating forecasts (Silver et al., 1998). In the case of an erratic demand

pattern, demand for SKUs is highly variable and unstable. In lumpy demand, there are

many periods without any demand occurring, and when the demand occurs, its size varies.

Since both demand size and demand occurrences are highly variable, it is challenging to

forecast SKUs with lumpy demand (Syntetos, 2001).
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3 Methodology

The purpose of this study is to present a methodological framework for combining sta-

tistical and judgmental forecasts in order to obtain more accurate results for SKUs with ID

patterns. The proposed framework for forecasting ID is described as a six-stage model, as

shown in Figure 2.

In the first stage, the data is prepared for the forecasting process. The second stage

is categorizing the demand data based on demand patterns (intermittent, smooth, lumpy

and erratic) mentioned in Section 2.2 by using the categorization schemes proposed for the

SKUs with ID patterns. In the third stage, a statistical forecasting model is built using

the appropriate ID methods. The best-performing forecasting method is selected using

accuracy measures appropriate for ID data. Parallel to statistical forecast model building,

the judgmental forecasting model is also built in the fourth stage. The fifth stage is where

the best statistical forecasts are combined with the judgmental forecasts by using combining

procedures. Finally, the accuracies for statistical, judgmental, and combined forecasts are

calculated, and the best-performing methods are selected for each SKU in the sixth stage.

The following sections explain each stage of this framework.

Figure 2: Stages of the proposed methodological framework

3.1 Data preparation

The first stage is to prepare the data for building a forecast model. The data usually

gathered from companies may not be suitable for directly using in the forecasting process.

For instance, historical data for an SKU may have missing values, consisting only of zeros

or a high number of consecutive zeros, especially in the beginning or ending periods, which

may indicate that SKU is a new product or it is not in use anymore. Such SKUs should be

eliminated from the dataset to start the forecasting process.
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3.2 Categorization of the demand data

The second stage is the categorization of the demand data. Categorizing the data accord-

ing to the SKUs’ demand patterns plays an essential role in selecting the best-performing

forecasting method and inventory control parameters. Companies hold high numbers of

SKUs, so it is suggested that, instead of evaluating them on an individual basis, it is more

effective to assess them as groups with similar characteristics. In the literature, there are

several categorization schemes proposed by various researchers (e.g., Williams, 1984; John-

ston & Boylan, 1996; Syntetos, 2001; Ghobbar & Friend, 2002; Eaves, 2002; Syntetos et al.,

2005; Kostenko & Hyndman, 2006; Boylan et al., 2008).

In this study, the Syntetos-Boylan-Croston (SBC) scheme proposed by Syntetos et al.

(2005) is used since the majority of the studies reported accurate results based on this scheme

(Fildes et al., 2019), and it is also easy to understand and interpret from the point of the

users. The SBC scheme uses average inter-demand interval (p) and squared coefficient of

variation (CV 2) to categorize the demand patterns into four groups: smooth, intermittent,

erratic, and lumpy. The authors defined the demand patterns and established the regions of

superior performance by comparing the theoretical MSE values of EWMA, CR and Syntetos-

Boylan Approximation (SBA). The SBC scheme was empirically tested by using 3,000 SKUs

from a company operating in the automotive industry, and the validity is confirmed. The

results showed that the cut-off points are p=1,32 and CV 2=0,49. Figure 3 visualizes the

categorization scheme recommended by Syntetos et al. (2005).

Figure 3: SBC categorization scheme

Source: Boylan et al. (2008, p.476)

Based on the cut-off values of SBC categorization, p, and CV 2 of each demand pattern,

SBS categorization suggests that forecasting the smooth demand with CR gives the highest

accuracy while erratic, lumpy, and ID are forecasted best by using SBA.

3.3 Building a statistical forecast model

After examining the data patterns using an appropriate categorization scheme, in the

third stage, statistical forecasts should be generated using the candidate models for each

category and evaluated based on their accuracies to select the best-performing one.
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ID patterns can be modeled by using several statistical forecasting methods (Waller,

2015). This study covers three widely used methods in the literature: the single exponential

smoothing (SES) as a traditional method, the pioneer Croston method (CR) proposed for

ID pattern and Syntetos-Boylan Approximation (SBA) as one of the CR’s variants.

3.3.1 Single Exponential Smoothing

In practice, Simple Exponential Smoothing (SES) is commonly used due to its straight-

forwardness and robustness. It is a parameter-based method. It provides an EWMA of all

observed values. This method aims to estimate the current level to use when forecasting

future values. SES is appropriate for data without a seasonal pattern or trend. SES revises

an estimate by using more recent experiences. The calculations require a predetermined

parameter, “α”, the so-called smoothing constant. The most recent observation receives the

highest weight, and the older observations receive less weight. The smoothing constant is a

value between 0 and 1 and is determined judgmentally and based on the data’s character-

istics. Silver et al. (1998) suggest choosing a value for the smoothing constant between 0.1

and 0.3 if forecasting is done monthly. The general formulation of exponential smoothing is

Yt+1 = α At + (1− α) Yt (3)

where Yt and Yt+1 are the old and new smoothed value of the forecast for periods t and

t+ 1, respectively, and At is a new observation or the actual value of the series in period t.

SES is a widely used method by practitioners for SKUs that have both smooth and non-

smooth demand patterns. As a strong candidate among conventional time-series forecasting

techniques, SES is chosen for testing its effectiveness in the context of ID forecasting.

3.3.2 Croston’s Method (CR)

Croston (1972) proved that using SES is inadequate for forecasting the ID due to the

biases it causes. Syntetos et al. (2015, p. 1747) stated that “In SES, data that is more

recent weights more heavily. Thus, just after a demand occurs, it gives forecasts that are

biased high while it gives forecasts that are biased low just before a demand”. This situation

results in high replenishments and excessive stock levels.

In order to address this problem, a new forecasting method, the CR model, which sep-

arately estimates the non-zero demand size and inter-arrival time between subsequent de-

mands by using SES, is proposed (Croston, 1972). CR is the first proposed method, espe-

cially for SKUs that have ID patterns. It assumes that demand occurs as a Bernoulli process;

intervals between demands are independent and identically distributed, and demand sizes

are independent and normally distributed. According to the CR, the ratio of estimates of

the mean size of non-zero demand (Zt) to the mean interval between non-zero demands (Pt)

provides an estimate of the mean demand per period, Yt, as follows.

Yt =
Zt

Pt
(4)

The algorithm for CR, which is provided in Table 1, estimates also uses the observed value

of the demand, At, and the time interval since the last demand, Q.
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Table 1: Croston Method’s Algorithm

If At = 0 If At ̸= 0

Zt = Zt−1 Zt = α At + (1− α) Zt−1

Pt = Pt−1 Pt = α Qt + (1− α) Pt−1

Q = Q + 1 Q = 1

Figure 4 schematizes the CR forecasting process. When there is not any demand in

a review period, the estimates are not changed. If the demand is zero in period t, the

algorithm only increments the count of periods since the last positive demand (Croston,

1972). The forecasts are updated only after the occurrence of positive demand. If demand

occurs every period, CR’s forecasts are the same as forecasts that SES generate. So, it is

possible to use this method both for intermittent and smooth demand patterns.

Figure 4: Forecasting process of Croston’s method

Source: Nagaria (2017)

Several studies showed the superiority of CR over traditional methods (Willemain et al.,

1994; Johnston & Boylan, 1996; Ghobbar & Friend, 2003)). Due to its proven success in

forecasting the demand for the SKUs with ID and its applicability without any additional

costs for the organizations, this method is also used while generating statistical forecasts.

3.3.3 Syntetos and Boylan Approximation (SBA)

Due to some mathematical derivation problems, Syntetos & Boylan (2001) reported that

CR is biased. Thus, Syntetos-Boylan Approximation (SBA) was proposed as a revised

model, which approximately corrects the bias in CR’s demand estimates. The new mean

demand estimator is given as follows.

Yt =
(
1 − α

2

) Zt

Pt
(5)

SBA is the most widely used variant of CR. Several studies in the literature showed

that SBA outperforms other methods such as SES, CR, and MA (Eaves & Kingsman, 2004;
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Syntetos & Boylan, 2001; Syntetos et al., 2005; Gutierrez et al., 2008). This method is

selected since it improves the quality of forecasts generated by CR.

Another issue is that neither of these methods causes any additional cost for the compa-

nies since it is easy to apply by using simple software like MS Excel or RStudio. Due to the

success and prevalence of these methods both in literature and practice for ID forecasting,

they are selected for this study.

3.3.4 Performance measures of Statistical Forecast Model

In practice, the generated forecasts from a forecast model are rarely perfect. Forecast

accuracy is the most important criterion when deciding whether to use a forecasting method

or not. The next step in the statistical forecasting process is the measurement of forecast

accuracies by using appropriate measures to see the performance of each method and related

parameters. These measures are based on the forecast error, et, the difference between actual

value, At, and forecast, Ft, for a given period t as follows.

et = At − Ft (6)

The et values closer to 0 show that the forecast is close to the actual. Positive et value

shows that the forecasts are smaller than the actual (underestimation), whereas negative et
values indicate an overestimation in the forecasts, i.e., forecasts are larger than the actuals.

The error measures are categorised into scale-dependent, scale-independent, percentage,

and relative. Scale-dependent errors have the same scale as the data and are used for

comparing different forecasting methods applied to the same data. It is not appropriate to

use such measures to compare datasets with a different scale. In scale-independent error

measures, the error is scaled and becomes independent of the scale of the data. They can

be used to compare forecasting methods both on a single series and between different series.

Relative error measures are used to determine the best-performing method by dividing

the forecast errors obtained by using different forecasting methods from each other. This

division scales the measures (Hyndman & Koehler, 2006).1

As the chosen forecast error measure can influence the performance ranking of fore-

casting methods, there is no metric that was universally best (Silver et al., 1998). The

most appropriate performance measures for intermittent series are mean absolute scaled

error (MASE, as the standard measure for the data with different scales and zero values,

Hyndman & Koehler, 2006), scaled mean absolute error (sMAE), scaled mean square error

(sMSE), scaled cumulative error (sCE, as traditional (accuracy) measurements, Wallström

& Segerstedt, 2010), and scaled periods in stock (sPIS, as bias error measure, Hyndman

& Koehler, 2006; Kourentzes, 2014; Petropoulos & Kourentzes, 2015). Relative Geometric

Root Mean Square Error (RGRMSE) is also one of the most used relative error measure-

ments first proposed by Fildes (1992). Syntetos (2001) and Syntetos & Boylan (2001)

recommended RGRMSE as it is a well-behaved accuracy measure to use in ID. In the last

M5 competition, Root Mean Squared Scaled Error (RMSSE) was required to evaluate the

accuracy of point forecasts for ID (Makridakis et al., 2022). After calculating the forecast

accuracies for each SKU, the results are compared, considering different measures. The final

forecasts are generated using the best-performing methods and parameters for each SKU.

1 The details of the error measures are available in Appendix.
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3.4 Making judmental forecasts

The mental capacity of humans for processing information has reasonable boundaries.

Judgmental forecasters quickly arrive at a point where more information is no longer useful

in making more accurate forecasts. Furthermore, regardless of how intelligent humans are,

they are incapable of learning about complex relationships solely through experience. Thus,

it is difficult for them to forecast complex, uncertain situations without the aid of struc-

tured techniques (Green & Armstrong, 2015). In general, it has been demonstrated that

standardizing the techniques applied by experts will increase accuracy (Armstrong, 2001a).

The jury of executive opinion, the Delphi method, analogies, and scenario forecasting are

some of the judgmental methods that can be used to reflect experience and knowledge about

the SKUs in the process of forecasting ID. These techniques, which are described in more

detail below, can be used to produce judgmental forecasts in parallel with the statistical

model construction in Stage 3 of the process.

3.4.1 The jury of executive opinion

The jury of the executive opinion, as one of the most common methods used in judg-

mental forecasting, relies on the opinions and expertise of high-level managers, executives,

or experts who have the best insights about the firm’s future situation. The final group

forecast becomes the forecast for a product as a blend of opinions of these executives from

different functional areas such as sales, marketing, and production. The opinions can either

be collected by using personal interviews or group meetings.

Though in group meetings, there is a chance of discussion of various viewpoints, there

may also be the domination of an expert with a strong personality which may affect the final

forecast (Wilson & Keating, 2008). In the jury of executive opinion method, companies can

also use statistical models to help with the analysis (Wright, 2013).

3.4.2 Delphi method

Assuming that a group’s forecast is more accurate than an individual’s forecast, the

Delphi method aims to construct consensus forecasts from a group of experts in a struc-

tured and iterative manner (Hyndman & Athanasopoulos, 2018). The Delphi procedure,

implemented and managed by a facilitator, has the following steps: (i) Assemble a panel

of experts between 5 and 20 with diverse expertise. (ii) Set the forecasting tasks and de-

liver them to the experts. (iii) Experts provide preliminary forecasts and rationales and

summarize the initial forecasts to provide feedback to the experts. (iv) Deliver feedback to

experts so that they can revise their forecasts based on the opinions of others. This process

is repeated two to three times till the experts reach a satisfactory level. (v) By aggregating

the forecasts of experts, construct the final forecasts.

This procedure has four key components: anonymity, iteration, controlled feedback,

and group response aggregation. During the processes, all participating experts maintain

their anonymity and express their opinions privately without social and political pressure.

When using group-based processes to gather and synthesize the information, anonymity can

minimize the effects of dominant individuals, which are typically a problem (Dalkey, 1969).

The geographical dispersion of the experts, as well as the use of electronic communication,

facilitates confidentiality and reduces problems associated with group dynamics, such as

manipulation or duress to accept a viewpoint (Hsu & Sandford, 2007). Iteration allows

12



World Journal of Applied Economics 2023(1)

experts to change their minds without losing face in the eyes of the remaining group members

(Hanke & Wichern, 2014). Usually, two or three iterations are sufficient since the experts

may drop out as the number of iterations increases (Hyndman & Athanasopoulos, 2018).

The Delphi method uses controlled feedback to reduce the effect of noise which refers to

group interaction that both affects the data and deals with other expectations rather than

concentrating on the main topic. With controlled feedback, a structured description of

the prior iteration is distributed to the experts. Using the feedback, experts can generate

additional insights (Hsu & Sandford, 2007). Group response is usually generated by giving

each expert’s forecast equal weight.

3.4.3 Forecasting by analogies

One of the judgmental forecasting methods is to use analogies. Analogy contains infor-

mation about how people behaved in a similar situation in the past. Forecaster identifies

a pattern that happened in the past and applies the same pattern to a new issue. It is

expected that analogies will be helpful in forecasting decisions in conflict situations, like

strikes or international disputes, since they provide essential information for difficult situa-

tions to forecast (Green & Armstrong, 2007). However, analogies are generally used in an

unstructured way when people make judgmental forecasts. Armstrong (1985) showed that

structured judgmental forecasting methods provide higher accuracy than unstructured ones.

The structured analogy is related to Case-Based Reasoning (CBR), which is used in

cognitive science and artificial intelligence. In CBR, information about situations (cases) is

stored with the intention of recalling cases that are comparable to a target problem assisting

in problem-solving (Armstrong, 2001a). Green & Armstrong (2007) proposed a structured

approach for forecasting with analogies, which may encourage experts to consider more

information on analogies and to process it effectively.

Structured analogies have five steps: (i) The appointed administrator describes the target

situation briefly and accurately. (ii) The administrator chooses at least five experts who

have knowledge about similar situations to the target situation. (iii) Experts identify and

describe as many analogies as they can. Based on each of these analogies, forecasts are

generated. Green & Armstrong (2007) stated that experienced forecasters on analogies

who have more than two analogies generate the most accurate forecasts. (iv) Experts list

similarities and differences between their analogies and target situations. Later they rate

the similarity of each analogy to the target situation on a scale. (v) From experts’ analogies,

the administrator drives the forecasts using a set rule. This rule can be a weighted average

where the weights can be guided by the ranking scores of each analogy by the experts

(Hyndman & Athanasopoulos, 2018). The lack of situations comparable to the target is a

limitation of structured analogy.

3.4.4 Scenario Forecasting

Scenario-based forecasting is fundamentally different from judgmental forecasting in its

methodology. This method creates forecasts using scenarios that are intended to be plausible

but not necessarily most likely. These scenarios either portray a quick snapshot of the

future or a believable progression from the present to the future (Bunn & Salo, 1993). Each

scenario-based forecast may have a low chance of occurring, unlike the Delphi and using an

analogy, where the anticipated outcome is meant to be a likely one.
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The effects and interactions of all potential factors and forecasting goals are considered

when creating the scenarios. The scenarios help managers to understand the role of uncer-

tainties better. Also, some extremes, like the best, middle, and worst-case scenarios, can

be identified when building forecasts based on analogies. Keeping track of these extremes

can help with early emergency planning (Hyndman & Athanasopoulos, 2018). In capital-

intensive industries like oil companies, vehicle manufacturers, and electric suppliers, which

have long planning horizons, scenario techniques are found to be more popular.

The selection of judgmental procedures is influenced by significant changes, frequent fore-

casts, disagreements among decision-makers, and policy considerations (Armstrong, 2001b).

If the expected changes are not significant, methods are likely to differ slightly in accuracy.

Expert forecasts, which can be adapted to the condition and prepared instantly, may also

suffice for infrequent forecasts. If decision-makers expect large changes in the situation and

are not in conflict, forecasts can be obtained from experts through the jury of executive

opinion or the Delphi method. Scenario forecasting is an alternative when decision-makers

need forecasts to examine different policies, and it is difficult to find relevant analogies.

4 Combining statistical and judgmental forecasts

The fifth stage combines the forecasts from the best statistical model and the judgmental

forecasts. Combining forecasts generated by using different methods plays an essential role

in improving overall accuracy. Each technique adds different information to the forecasting

process, which a single technique is not capable of. Blattberg & Hoch (1990) stated that the

final forecasts generated by combining judgmental and statistical forecasts are more accurate

than the constituent forecasts. The opinions of the experts add contextual information,

which explains the unexpected issues in the data. Also, it helps forecasters to understand

future events which would affect the historical data.

Combination procedures can range from mechanical methods, such as taking a simple or

weighted average of the constituent forecast, to using judgment to determine how forecasts

should be combined (Lawrence et al., 2006). The simplest approach is using an equal

arithmetic average of the individual methods (i.e. 1/M, where M is the number of forecasting

methods to be combined), which provides improvements in accuracy for many forecasts

(Clemen, 1989). More complex weighting schemes can also be determined by judgments

based on which modeling approach seems strongest or by several trials considering equal or

alternate weighting. For instance, if the practitioner believes that there are some issues that

may cause one constituent forecasting method to perform better than the other, s/he can

weigh this method heavier. However, this complexity and the time waste it causes would

make combining forecasts less desirable for an organization (Sanders & Ritzman, 2004).

Forecast errors range from 5.5% to 94% when forecasts are combined using a complex

method (Duncan et al., 2001). The findings of Fildes & Petropoulos (2015) supported

differential weighting in situations when there is prior evidence on which methods provide

forecasts that are most accurate given the conditions.

Armstrong (2001c) proposed some procedures for combining the forecasts. Combining

should be done mechanically to obtain greater accuracy and reduce bias, and all procedures

should be described in more detail. When using judgment, it should be done in a structured

manner, and the details of the procedure should be documented. When there is insuffi-

cient information about the relative accuracy of alternate forecasting sources, judgmental
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weights should be avoided. When subjects provide positive feedback about the accuracy of

the sources, judgmental weighting is more accurate (Fischer & Harvey, 1999). Armstrong

(2001c) stated that when the practitioner is uncertain about the forecasting methods to be

used, each forecast should be weighted equally. Fildes & Petropoulos (2015) found that dif-

ferential weighting is appropriate when there is prior knowledge of the methods that produce

forecasts that are the most accurate given the circumstances.

4.1 Evaluation

The last stage of the framework is evaluating the performances of statistical, judgmental,

and combined forecasts to find out the best-performing one for each SKU.

In the final evaluation, the performance of each model is compared based on MASE,

RMSE, S-MAPE, and bias in this study. Bias is calculated by averaging the difference

between the actual and predicted value. This value should be close to zero if the forecast is

unbiased. The positive value refers to underestimation, and the negative value means that

the forecasting method overestimated the values.

Aside from producing the most accurate forecasts, the chosen forecasting method should

also produce forecasts that are timely and easily understood by management, allowing the

forecast to aid in making better decisions (Hanke & Wichern, 2014).

5 Empirical Illustration

The proposed framework of this study is illustrated on real-world data that contains

monthly customer demands (60 months, from 2014 to 2018) for after-sales spare parts from

an anonymous company operating in the electronics industry, manufacturing small home

appliances. The company did not provide any information about details except the amounts

of the demanded SKUs, and all SKU names were changed for anonymity. 8,498 SKUs are

presented in a raw form in this dataset.

In this study, it is assumed that the SKUs in the dataset are independent of one another

because the company withheld information about the SKUs due to anonymity. Furthermore,

it is assumed that the historical data was accurately and properly recorded.

5.1 Data preparation

The demand data is examined to prepare for the forecasting process. All calculations

and data analysis is performed by using MS Excel 2019 and RStudio (version 3.6.0).2

First, the historical demand dataset is examined to determine whether it is incomplete

or inconsistent. Some SKUs that have not been demanded in the last 60 months are being

phased out. Also eliminated are SKUs with no or too few demand occurrences in the first

and last 24 months, those with less than ten demand occurrences in 60 months, and products

with no demand between months 24 and 36. Finally, there are 2,431 SKUs left, totaling

145,860 data points. Descriptive statistics given in Table 2 show the variety in the demand

intervals, non-zero demand sizes, and demand per period. The demand intervals imply that

the number of consecutive zero demands is high.

2 The codes are available upon request.
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Table 2: Descriptive statistics for after-sales spare parts

2,431 SKUs in Total
Demand intervals Demand sizes Demand per period

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Minimum 1.00 0.00 1.11 0.79 0.63 6.24

First quartile (25%) 1.07 0.26 5.24 19.51 5.39 28.61

Median 1.52 0.85 9.84 37.24 10.65 48.10

Third quartile (75%) 2.63 2.07 17.83 64.47 19.05 75.09

Maximum 7.30 4.92 44.69 149.37 50.19 169.44

5.2 Categorization of the demand data

According to the SBC categorization scheme, considering the average inter-demand in-

terval and squared coefficient of variation values for spare parts, the dataset is categorized

by using the RStudio’s “tsintermittent” package (Kourentzes & Petropoulos, 2016) and the

idclass function. 389 SKUs have smooth demand patterns, while the remaining 2,042 SKUs

have erratic, lumpy, and ID patterns, as shown in Figure 5.

Figure 5: SBC classification for after-sales spare parts

In Table 3, the distribution of the dataset according to demand categories is presented

using the p and CV 2 values for classification. The majority of the SKUs in the dataset have

ID, while the least number of SKUs (16%) have a smooth demand pattern.

Table 3: Demand patterns for after-sales spare parts

Pattern Condition Quantity Percentage

Smooth p ≤ 1.32 and CV 2 ≤ 0.49 389 16.0

Erratic p ≤ 1.32 and CV 2 ≤ 0.49 582 23.9

Intermittent p > 1.32 and CV 2 ≤ 0.49 802 33.0

Lumpy p > 1.32 and CV 2 > 0.49 658 27.1

5.3 Building statistical forecast model

This stage is primarily concerned with obtaining the best statistical forecast model for

monthly customer demands for after-sales spare parts. The analysis is carried out in the

following steps to obtain this model: identification of statistical forecasting methods based

on the nature of the data, estimation of models, evaluation of models based on forecast

accuracy, and selection of the final model to generate forecasts.
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First, the statistical forecasting methods that will be applied to each SKU in the dataset

are determined as the traditional single exponential smoothing (SES), the pioneer Croston

method (CR) proposed for ID pattern, and Syntetos-Boylan Approximation (SBA) as one

of the CR’s variants.

Each model is estimated in the second step using the proper parameters. The datasets

used to build forecast models are typically split into the training and test sets (Hyndman &

Athanasopoulos, 2018). Out of 60 months, the first 42 are used as a training set to estimate

the statistical forecasting model’s parameters, and the remaining months are used as the

test set to evaluate the model’s accuracy. The “tsintermittent” package of RStudio is used

to develop the models. The package offers “sexsm” function for building the traditional

SES model and “crost” function for the CR and SBA models. These three methods use the

smoothing constant (α) for forecasting as well as initial values to start their algorithms, so

the selection of these parameters will directly affect how well they perform.

The literature usually suggests a small α ranging from 0.05 to 0.30. For ID data, low

smoothing constants between 0.10 and 0.20 are realistic (Croston, 1972; Syntetos et al.,

2005). Therefore, α values are chosen between 0.05-0.30, incrementing in 0.05 in this anal-

ysis. Regarding the initial values to start their algorithm, SES requires one initial value for

the first estimate, whereas CR and SBA require two initial values (separately for demand

size and the interval between non-zero demands estimates). These initial values can be

determined by using the näıve method (one step ahead), or calculated by taking the mean

of the related values, or determined by the practitioner judgmentally.

Similarly, practitioners may choose to use optimal parameters rather than fixed initial

values. Cost (or loss) functions are used for the optimization process, and they measure the

fit of a model to the actual data. MAR (mean absolute rate), MAE (mean absolute error),

MSR (mean squared rate) and MSE (mean squared error) are the cost functions used in

this analysis, and the parameters minimizing the specified cost functions are chosen.

The “crost” function offers an option to use single or two optimal α parameters for CR

and SBA. The parameter α can be calculated automatically by choosing one of the prede-

termined cost functions. In this study, besides the preset α values, forecasts are generated

by using all combinations of single and double α values that optimize each cost function.

For the preset forecasts, the calculations are repeated for the mean and näıve initial values.

In total, for SBA and CR, 56 different forecasts are generated for each SKU. The forecast

horizon is 18 months which is equal to the length of the test set.

Once the forecasts are generated, the best-performing method and parameters for each

SKU are chosen based on the forecast accuracies in the third step. For evaluating the

statistical forecasting methods, scaled mean absolute error (sMAE), scaled mean squared

error (sMSE), root mean squared error (RMSE), symmetric mean absolute percentage error

(S-MAPE), mean absolute scaled error (MASE), scaled cumulative error (sCE), and scaled

periods in stock (sPIS) are used in the study. Scaling the errors turn the accuracy measure

into a scale-independent form. Scale-independent errors can be compared across the series.

That is why sMAE, sMSE and MASE are selected. Also, MASE is commonly used in

evaluating ID forecasts since it is appropriate to use for this problematic demand pattern.

RMSE is a scale-dependent error measure, and it is widely used in practice. So, it is

included in the comparison process as well. S-MAPE shows accuracy as a percentage. Also,

it overcomes the division by zero problems that MAPE has in the ID context.
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These measures are not capable of determining whether there is a systematic error, bias,

or not. To determine if the forecasting methods generate results which are not biased, it is

essential to use bias measures together with other accuracy measures. Since sCE and sPIS

are scaled measures, they are used as bias measures to make comparisons across the series.

The forecast accuracies are obtained by using “smooth” and “Metrics” packages of RStu-

dio. “Accuracy” function of “smooth” package provides accuracy measures as sMAE, sMSE,

sCE and sPIS while the MASE, S-MAPE and RMSE values can be calculated with the help

of “Metrics” package.

Table 4: Accuracy and bias measures for the sample SKU-P1 (partial representation)

MODEL MASE SMAPE RMSE sMAE sMSE sCE sPIS

P1.acc.m.ses020 2.07 0.87 808.02 0.75 0.52 7.47 54.97

P1.acc.m.ses025 2.43 0.93 914.73 0.88 0.66 8.76 63.38

P1.acc.m.ses030 2.82 0.99 1,035.80 1.02 0.85 10.19 72.63

P1.acc.m.sba005 1.05 0.72 429.07 0.38 0.15 1.49 16.09

P1.acc.n.sba010 1.12 0.69 518.04 0.40 0.21 3.44 28.79

P1.acc.n.sba015 1.19 0.70 549.37 0.43 0.24 3.96 32.15

All these accuracies are retrieved from the relevant RStudio functions and then organized

in an Excel file shown partially in Table 4 for the evaluations. This accuracy table has

136.136 rows and seven columns. The first column (Model) shows an ID which refers to a

description of the model performed. This ID is formed as having five components: SKU

number (e.g., P1), accuracy function (e.g., acc), initial value (m for mean, n for näıve and

o for optimum), forecast method (CR, SBA or SES) and α value (0.05-0.30).

In the last step, the accuracies of forecasting methods for each SKU are controlled.

Based on different measures, the best-performing method and parameters are selected (i.e.,

α and initial values) for the demand dataset. For example, in Table 4, the best-performing

forecasting model for the SKU coded as P1 is the SBA method with an α value of 0.05 and

the initial values determined by the mean. This selection is made based on considering all

of the accuracy measures since the best-performing method is not always the same for all of

them. Except for sCE and sPIS, smaller values show that the forecast is more accurate. For

sCE and sPIS, which are bias measures, values that are close to 0 are preferable. Otherwise,

their positive or negative values indicate stock problems.

The results are presented overall based on the demand pattern of the SKUs. The number

of SKUs that perform best for each forecasting method and parameter is used to assess the

performance of these methods and parameters.

Based on all preset smoothing α values and those calculated by minimizing the cost

functions, the statistical forecasting models performed best for the majority of all demand

patterns when the α parameter is set at 0.30 (Table 5). Opposite to the suggested guidelines

in the literature, larger smoothing values performed better for most SKUs in this dataset.

To identify the best method for determining the initial values for selected statistical fore-

casting models, the number of SKUs that performed best for each of the mean value, the

näıve estimate, and the optimum value obtained from the optimization process is calculated.

For the majority (41.2%; 1,002 out of 2,431) of SKUs that have erratic, intermittent, and

lumpy demand patterns, using the mean of a few more recent observations in the dataset

as the initial values of statistical forecasting models resulted in better performance in terms

of accuracy (Table 6). For a smooth demand pattern, the näıve method is better for deter-

18



World Journal of Applied Economics 2023(1)

mining the initial values.

Table 5: Optimum smoothing parameters based on the demand pattern

α Erratic (582) Lumpy (658) Intermittent (802) Smooth (389)

0.05 41 7% 88 13% 145 18% 54 14%
0.10 33 6% 47 7% 87 11% 49 13%

0.15 37 6% 47 7% 78 10% 35 9%

0.20 42 7% 67 10% 81 10% 51 13%
0.25 69 12% 61 9% 56 7% 35 9%

0.30 320 55% 303 46% 257 32% 130 33%
mae1 9 2% 19 3% 29 4% 9 2%
mae2 2 0% 11 2% 29 4% 6 2%

mar1 1 0% 3 0% 7 1% 2 1%
mar2 4 0% 1 0%

mse1 8 1% 2 0% 7 1% 3 1%

mse2 16 3% 6 1% 12 1% 7 2%
msr1 1 0% 2 0% 8 1% 2 1%
msr2 3 1% 2 0% 2 0% 5 1%

Note: For each demand pattern, the number in the parenthesis shows the total and the
first and second columns show the number and percent of SKUs, respectively.

Table 6: The method for identifying initial values of statistical models

Method # of SKUs % of SKUs Method # of SKUs % of SKUs

Erratic (582) Lumpy (658)

Mean 284 49% Mean 356 54%
Näıve 258 44% Näıve 257 39%

Optimum 40 7% Optimum 45 7%

Intermittent (802) Smooth (389)

Mean 362 45% Mean 150 39%

Näıve 342 43% Näıve 204 52%
Optimum 98 12% Optimum 35 9%

When the performances of the statistical forecasting methods are compared with each

other (Table 7), the majority of the SKUs in each demand pattern performed best accuracies

with the SBAmethod (61.4%; 1,493 out of 2,431 SKUs). For intermittent and lumpy demand

patterns, SES (39.7%; 580 out of 1,460 SKUs) also performed better than CR.

Table 7: Performance of statistical forecasting methods according to demand patterns

Method # of SKUs % of SKUs Method # of SKUs % of SKUs

Erratic (582) Lumpy (658)

CR 48 8% CR 45 7%
SBA 446 77% SBA 314 48%
SES 88 15% SES 299 45%

Intermittent (802) Smooth (389)

CR 69 9% CR 56 14%

SBA 452 56% SBA 281 72%
SES 281 35% SES 52 13%

5.4 Making judgmental forecasts

In this study, judgmental forecasts are generated by the company by using executive opin-

ions. The company usually relies on the judgmental forecasts generated by the executives
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instead of using any statistical techniques. This would create an advantage of generating

accurate forecasts as they have deep experience in their business context.

For the SKUs under investigation, judgmental forecasts were generated by the purchas-

ing specialists as experts with the best insights about the company’s future. Using their

experience, they decide the number of spare parts to order from their suppliers. Besides

historical demand data, this study requires a proxy variable that can reproduce historical

judgmental forecasts. For this purpose, 3,639 SKUs from the purchasing records covering

July 2017-December 2018 (18 months) are obtained from the company. However, only 1,205

of these records could be matched with the demand data. Thus, 1,205 SKUs are used for

the remaining steps of this forecasting process. This way of obtaining judgements can be

accepted as equivalent to using the jury of the executive opinion method in an unstructured

way to get the judgemental forecasts. It is assumed at this point that the experts made the

judgmental forecasts and are aware of the variables influencing the demand for the SKUs

for which they are responsible.

5.5 Combining statistical and judgmental forecasts

The next stage of the proposed framework is the combination process of the selected

statistical forecasting methods that are selected for all SKUs in both datasets with the

judgmental forecasts which are provided by the company.

This study aims to generate more accurate forecasts for ID by combining statistical

forecasts generated by the appropriate methods through the guidance of the literature with

judgmental forecasts based on expert opinions. When the time series is highly variable,

as in the case of SKUs with ID patterns, it is appropriate to use judgmental forecasts.

Thus, it is expected that this combination process will improve forecast accuracy. When

combining the constituent forecasts for these datasets, weighted average procedures are

used as this simple method performs better than the sophisticated combination strategies

(Clemen, 1989; Sanders & Ritzman, 2004). Even using equal weights for the constituent

forecasts (0.50 for statistical forecast and 0.50 for judgmental forecast) provides rather good

performance (Clemen, 1989). Besides using simple averaging, weights ranging from 0.10 to

0.90 are used in order to see the effect of the different weights on the accuracy level. Thus,

nine different combinations are implemented in the MS Excel environment.

As the judgmental forecasts provided by the company encompass 18 months, the com-

bination procedure is applied to only this range of the dataset. A combination of statistical

and judgmental forecasts is applied based on the weighted average procedure. Assume the

weights for the statistical and judgmental forecasts for a SKU are 0.6 and 0.4, respectively.

The combined forecast for this SKU is calculated as (Statistical Forecast Value x 0.6 +

Judgmental Forecast Value x 0.4).

5.6 Evaluation

The forecast accuracy for each SKU is calculated for all of the resulting combinations.

For the best-performing statistical methods, judgmental forecasts provided by the company

and all combinations with different weights, MASE, RMSE, and bias are calculated for each

SKU by using the “Metrics” package. The forecasting method that provides the highest

accuracy is selected among the combined, statistical, and judgmental forecasts.

The performance measures for all forecasting models developed in this study are partially

displayed in Table 8. It is seen that, based on three performance measures, sample SKUs
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perform best in different combinations and methods. The overarching standard for selecting

the best method is to look for consistent results across all measures. The criteria used in

the case of inconsistent situations is to select the method with the lowest value out of the

two accuracy measures (MASE and RMSE) plus the bias closest to zero.

Table 8: Performance measures for all forecast models (Partial representation)

# of
SKUs

Performance
Measure

S J 0.1S-
0.9J

0.2S-
0.8J

0.3S-
0.7J

0.4S-
0.6J

0.5S-
0.5J

0.6S-
0.4J

0.7S-
0.3J

0.8S-
0.2J

0.9S-
0.1J

P65

MASE 0.84 1.89 1.69 1.48 1.28 1.11 0.99 0.92 0.87 0.83 0.82

RMSE 10.29 22.75 20.77 18.84 16.99 15.25 13.65 12.26 11.14 10.39 10.10

Bias 2.01 20.39 18.15 15.91 13.67 11.43 9.19 6.95 4.71 2.47 0.23

P114
MASE 0.96 1.48 1.28 1.08 0.87 0.74 0.69 0.67 0.68 0.74 0.82
RMSE 6.79 9.78 8.62 7.52 6.51 5.65 5.01 4.69 4.74 5.17 5.88
Bias 5.41 6.83 5.61 4.39 3.16 1.94 0.71 0.51 1.74 2.96 4.18

P775

MASE 0.79 2.26 2.05 1.85 1.64 1.44 1.23 1.02 0.90 0.82 0.80

RMSE 2.61 6.64 6.07 5.51 4.97 4.45 3.96 3.51 3.12 2.82 2.64
Bias 0.15 6.11 5.49 4.86 4.23 3.61 2.98 2.35 1.73 1.10 0.47

P934
MASE 2.39 2.40 1.94 1.51 1.15 0.89 0.80 0.91 1.18 1.52 1.94
RMSE 7.94 7.97 6.65 5.40 4.30 3.46 3.13 3.44 4.27 5.37 6.62

Bias 7.29 7.33 5.87 4.41 2.95 1.48 0.02 1.44 2.91 4.37 5.38

Note: S stands for Statistical Model and J stands for Judgmental Forecast.

Table 9 lists how many SKUs were chosen as the top performers in the corresponding

settings. These results show that the majority (64.2%; 772 out of 1,205) of SKUs did perform

better when judgmental and statistical forecasts were combined. However, for many SKUs,

the combinations that give statistical forecasts more weight performed higher. For the

pure statistical models, the best performance was observed for 33.4% (402 out of 1,205) of

SKUs. On the other hand, the judgmental forecasts provided by the company’s purchasing

specialists performed worse (2.4%) compared to the alternative approaches. Models with

statistical forecasts given a weight greater than or equal to 0.5 performed better for 666

SKUs (55.3%). To sum up, most of the most accurate forecasts are generated by using the

combination process.

Table 9: Overall comparison of all models based on p and CV 2

Model # of SKUs Average p Average CV 2

0.1S - 0.9J 10 1.76 0.81

0.2S - 0.8J 19 2.19 0.69
0.3S - 0.7J 38 1.79 0.98

0.4S - 0.6J 41 1.89 0.71
0.5S - 0.5J 120 1.87 0.73
0.6S - 0.4J 68 1.36 0.84
0.7S - 0.3J 109 1.37 0.74

0.8S - 0.2J 162 1.30 0.74
0.9S - 0.1J 207 1.27 0.58

Judgmental 29 2.44 0.79
Statistical 402 1.44 0.56

Average 1,205 14.88 0.66

For getting additional insights into the results, the average p and CV 2 values in each

sub-group are also computed. To investigate the relationship between the weights assigned

to statistical forecasts and the parameters describing ID characteristics (i.e., average inter-

demand interval, p and CV 2 values), an OLS regression analysis is performed.
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Analysis showed that 70% of the changes in the weights assigned to statistical forecasts

could be explained by the average inter-demand interval p and CV 2 values (F=29.08 with p-

value <0.05). The relationship between the weights assigned to statistical forecasts and CV 2

values is found as negative (t=-3.136 with p-value<0.05). The negative relationship between

the weights assigned to statistical forecasts and the value of p is also substantiated (t= -5.98

with p-value<0.05). For higher inter-demand intervals and CV 2 values, lower weights may

be preferred for statistical forecasts in combined models. However, this finding needs to be

tested with stronger evidence in another research specifically designed for exploring such

connections.

6 Conclusion

Combining forecasts in the context of ID is one of the unnoticed research areas in the

literature. Studies combining statistical and judgmental forecasts for the ID of SKUs are

particularly scarce. From these facts, this study developed a methodological framework for

combining statistical and judgmental forecasts for ID. The proposed framework for fore-

casting is described as a six-stage model to obtain more accurate results for SKUs with ID

patterns. In line with the simple definition of Green & Armstrong (2015), the study defined

this framework as processes that are understandable to forecast users. Then, the frame-

work is tested using real-world data that includes monthly customer demands for after-sales

spare parts from an anonymous company that manufactures small home appliances in the

electronics industry. Results showed that combination is the best method for the majority

of SKUs, as expected.

This paper contributes to the limited literature by addressing the gap between the com-

bined forecast and the ID forecast. Companies primarily employ judgmental approaches in

which their forecasts are entirely dependent on business context information. Thus, these

kinds of pure judgmental forecasts have the risk of being biased. The proposed frame-

work gives practitioners and researchers a comprehensive overview to help them make more

accurate forecasts while also encouraging the use of simple but structured approaches.

On the other hand, the results of this study must be interpreted in light of some lim-

itations. The first is concerned with data quality and missing information. The company

provided the data without giving any details for the SKUs, such as what the SKU is, if SKU

is a new item or not used anymore, and whether it has a similarity to other SKUs or not.

Thus, all calculations are done assuming that the SKUs are independent of each other and

are actively used for the given periods. More detail about the SKUs would help to categorize

and arrange the dataset for the forecasting process, which would provide better accuracy

levels. The second limitation is the method used to generate judgmental forecasts. During

the implementation, company representatives generate judgmental forecasts as is standard

procedure in their operations. At this point, it is assumed that the representatives made

the judgmental forecasts as experts and are aware of the variables influencing demand for

the SKUs for which they are responsible. To better measure, the model’s performance, this

part of the implementation could use more structured and controlled methods, as suggested

in this study.

Future research can determine the framework’s applicability in different contexts. When

developed, a toolkit can help and motivate people to put this model into action.
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Appendix: Details of performance measures

Measure

Formula Explanation

Scale-dependent Error Measures

Mean Error ME = 1
n

∑n
t=1 et The small value of ME does not mean that the error is small

but shows biases. ME takes a negative (positive) value if the

forecasting method underpredicts (overpredicts) the actual.

Cumulative Error CE =
∑n

t=1 et This method sums up the errors to determine the bias.

Periods in stock PISi = −
∑H

h=1

∑h
j=1 (YN+j − Ŷj) H is the length of the required forecast horizon. This mea-

sure shows the total number of periods in stock or stock-out

periods of the forecasted item. Positive PIS indicates stock

left over, whereas negative PIS represents stock shortages.

Mean Absolute Error MAE = 1
n

∑n
t=1 |et| MAE shows the errors regardless of under or over the fore-

cast. This method gives an average of error measurement

irrespective of the direction. Also, it eliminates the cancel-

ing of the problem caused by the ME method. This method

shows how large the average error can be.

Mean Square Error MSE = 1
n

∑n
t=1 e2t Like MAE, it eliminates the canceling out problem. This

penalizes large forecasting errors by squaring the errors

(Hanke & Wichern, 2014). MSE is widely used to com-

pare the accuracy levels of different methods. MSE value

close to 0 is preferable

Root Mean Squared

Error

RMSE =
√

1
n

∑n
t=1 e2t Lower values of RMSE is better.

29



In
term

itten
t
D
em

a
n
d
fo
r
S
K
U
s

Scale-independent Error Measures

Mean absolute scaled

error

MASE = 1
n

∑n
t=1

∣∣ et
1

(n−1)

∑n
t=2 |At − At−1|

∣∣ Its value less (higher) than 1 indicates that the actual fore-

cast performance is better (worse) than the näıve method.

Division by zero only occurs if all the values in the time

series are equal. It is symmetrical and robust to outliers.

Scaled CE sCE =
∑

YN+h − Fh
1
N

∑N
t=1 Yt

N is the number of in-sample observations, YN+h is the hth

out-of-sample period and Fh is the h-steps ahead forecasts.

sCE can be used for comparing the performance of different

methods on different datasets.

Scaled PIS sPISi = PISi
1
N

∑N
t=1 Yt

A scale-independent form of PIS.

Scaled MAE sAEi,h = |YN+h − Fh|
1
N

∑N
t=1 Yt

Like in sCE, MAE can be scaled to be able to average the

measures across series. sMAE is the scaled absolute error

averaged over all series and horizons.

Scaled MSE sSEi,h =
(

YN+h − Fh
1
N

∑N
t=1 Yt

)2

sMSE (Scaled MSE) is the mean of scaled squared error

across all series and horizons.

Root Mean Squared

Scaled Error

RMSSE =

√
1
h

∑(n+h)
t=n+1(Yt − Ŷt)2

1
1−n

∑n
t=2(Yt − Yt−1)2

RMSSE is a variant of the well-known MASE.

Percentage Error Measures

Mean Absolute Per-

centage Error

MAPE = 1
n

∑n
t+1 |

et
At

| x 100 If there are zero values in the denominator (actual demand),

there will be division by zero problems. Thus, the percent-

age calculation will be undefined. Because of this, using

MAPE is not appropriate for items with ID.

Symmetric Mean Ab-

solute Percentage Er-

ror

S −MAPE = 2
n

∑n
t+1

|At − Ft|
At + Ft

x 100 This method is proposed by Makridakis (1993) to avoid

asymmetry caused by the application of MAPE. Unlike

MAPE, S-MAPE has a lower and an upper bound. The

formula above provides results between 0 and 200%.
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Relative Error Measures

Relative Geometric

Root Mean Square

Error

RGRMSE =
(Πn

t+1(At − FB,t)
2)(1/2n)

(Πn
t+1(At − FA,t)2)(1/2n)

Subscripts A and B refers to the forecasting methods.

RGRMSE is a safe measure to use in ID.

Percentage of times

Better (PB)

PB is a method under consideration that out-

performs another.

It can easily be calculated and interpreted and is robust to

large forecast errors. PB is used for comparing two estima-

tors based on performance criteria like mean deviation or

geometric mean square error.

Percentage Best (PBt) PBt is the percentage of occurrences when one

method outperforms all others.

When more than two estimators are compared, Percentage

Best (PBt) is used rather than PB.
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